
Introduction to Machine Learning

Advanced Risk Minimization
Bernoulli Loss

Learning goals
Know the Bernoulli loss and related
losses (log-loss, logistic loss,
Binomial loss)

Derive the risk minimizer

Derive the optimal constant model



BERNOULLI LOSS

L (y , f ) = log(1 + exp(−y · f )) for y ∈ {−1,+1}
L (y , f ) = −y · f + log(1 + exp(f )) for y ∈ {0, 1}

Two equivalent formulations for different label encodings

Negative log-likelihood of Bernoulli model, e.g., logistic regression

Convex, differentiable
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BERNOULLI LOSS ON PROBABILITIES

If scores are transformed into probabilities by the logistic function

π = (1 + exp(−f ))−1 (or equivalently if f = log
(

π
1−π

)
are the

log-odds of π), we arrive at another equivalent formulation of the loss,
where y is again encoded as {0, 1}:

L(y , π) = −y log (π)− (1 − y) log (1 − π) .
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BERNOULLI LOSS: RISK MINIMIZER

The risk minimizer for the Bernoulli loss defined for probabilistic
classifiers π(x) and on y ∈ {0, 1} is

π∗(x) = η(x) = P(y = 1 | x = x).

Proof: We can write the risk for binary y as follows:

R(f ) = Ex [L(1, π(x)) · η(x) + L(0, π(x)) · (1 − η(x))] ,

with η(x) = P(y = 1 | x) (see section on the 0-1-loss for more details).
For a fixed x we compute the point-wise optimal value c by setting the derivative to 0:

∂

∂c
(− log c · η(x)− log(1 − c) · (1 − η(x))) = 0

−η(x)
c

+
1 − η(x)

1 − c
= 0

−η(x) + η(x)c + c − η(x)c
c(1 − c)

= 0

c = η(x).
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BERNOULLI LOSS: RISK MINIMIZER / 2

The risk minimizer for the Bernoulli loss defined on y ∈ {−1, 1} and
scores f (x) is the point-wise log-odds, i.e. the logit function (inverse of
logistic function) of p(x) = P(y | x = x):

f ∗(x) = log( p(x)
1−p(x))

The function is undefined when P(y | x = x) = 1 or P(y | x = x) = 0,
but predicts a smooth curve which grows when P(y | x = x) increases
and equals 0 when P(y | x = x) = 0.5.
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BERNOULLI LOSS: RISK MINIMIZER / 3

Proof: As before we minimize

R(f ) = Ex [L(1, f (x)) · η(x) + L(−1, f (x)) · (1 − η(x))]

= Ex [log(1 + exp(−f (x)))η(x) + log(1 + exp(f (x)))(1 − η(x))]

For a fixed x we compute the point-wise optimal value c by setting the
derivative to 0:

∂

∂c
log(1 + exp(−c))η(x) + log(1 + exp(c))(1 − η(x)) = 0

− exp(−c)
1 + exp(−c)

η(x) +
exp(c)

1 + exp(c)
(1 − η(x)) = 0

−exp(−c)η(x)− 1 + η(x)
1 + exp(−c)

= 0

−η(x) +
1

1 + exp(−c)
= 0

c = log

(
η(x)

1 − η(x)

)
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BERNOULLI: OPTIMAL CONSTANT MODEL
The optimal constant probability model π(x) = θ w.r.t. the Bernoulli loss for
labels from Y = {0, 1} is:

θ̂ = argmin
θ

Remp(θ) =
1
n

n∑
i=1

y (i)

Again, this is the fraction of class-1 observations in the observed data. We can
simply prove this again by setting the derivative of the risk to 0 and solving for
θ. The optimal constant score model f (x) = θ w.r.t. the Bernoulli loss labels
from Y = {−1,+1} or Y = {0, 1} is:

θ̂ = argmin
θ

Remp(θ) = log
n+

n−
= log

n+/n
n−/n

where n− and n+ are the numbers of negative and positive observations,
respectively.
This again shows a tight (and unsurprising) connection of this loss to log-odds.
Proving this is also a (quite simple) exercise.
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BERNOULLI-LOSS: NAMING CONVENTION

We have seen three loss functions that are closely related. In the
literature, there are different names for the losses:

L (y , f ) = log(1 + exp(−yf )) for y ∈ {−1,+1}
L (y , f ) = −y · f + log(1 + exp(f )) for y ∈ {0, 1}
L (y , π) = −y log (π)− (1 − y) log (1 − π) for y ∈ {0, 1}

L (y , π) = −1 + y
2

log (π)− 1 − y
2

log (1 − π) for y ∈ {−1,+1}

are equally referred to as Bernoulli, Binomial, logistic, log loss, or
cross-entropy (showing equivalence is a simple exercise).
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