Introduction to Machine Learning

Advanced Risk Minimization

Bernoulli Loss

L(y. )
| <

Learning goals

@ Know the Bernoulli loss and related

losses (log-loss, logistic loss,
Binomial loss)

@ Derive the risk minimizer

@ Derive the optimal constant model
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BERNOULLI LOSS

L(y,f) = log(1+exp(—y-f)) forye{—1,+1}
L(y,f) = —y-f+log(1+exp(f)) fory e {0,1}

@ Two equivalent formulations for different label encodings
@ Negative log-likelihood of Bernoulli model, e.g., logistic regression
@ Convex, differentiable

L(y, f) = In(1 + exp(-yf))
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BERNOULLI LOSS ON PROBABILITIES

If scores are transformed into probabilities by the logistic function
7= (14 exp(—f))"" (or equivalently if f = log <ﬁ> are the
log-odds of ), we arrive at another equivalent formulation of the loss,

where y is again encoded as {0, 1}:

Lly,m) = —ylog(m) — (1 —y)log(1 — 7).
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BERNOULLI LOSS: RISK MINIMIZER

The risk minimizer for the Bernoulli loss defined for probabilistic
classifiers 7(x) andon y € {0,1} is

m(x) =n(x) =P(y =1[x=x).
Proof: We can write the risk for binary y as follows:

R() = Ex[L(1,7(x) - n(x) + L(0,7(x)) - (1 = n(x))],

with n(x) = P(y = 1| x) (see section on the 0-1-loss for more details).
For a fixed x we compute the point-wise optimal value ¢ by setting the derivative to 0:

2 (~logc-n(x) ~log(t —0)- (1 ~n(x))) = ©
_M + 177 T](X) = 0
c 1—-c
—n(x) +n(xje+c—nxe _
c(1—vc)
c = n(x).
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BERNOULLI LOSS: RISK MINIMIZER /2

The risk minimizer for the Bernoulli loss defined on y € {—1,1} and
scores f(x) is the point-wise log-odds, i.e. the logit function (inverse of
logistic function) of p(x) = P(y | x = x):

) = log(295) 7

The function is undefined when P(y | x = x) =1 or P(y | x = x) = 0,
but predicts a smooth curve which grows when P(y | x = x) increases
and equals 0 when P(y | x = x) = 0.5.
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BERNOULLI LOSS: RISK MINIMIZER /3
Proof: As before we minimize
R(f) = Ex[L(1,1(x))-n(x)+ L(=1,1(x)) - (1 — n(x))]
= Ex[log(1 + exp(—£(x)))n(x) + log(1 + exp(f(x)))(1 — n(x))]

For a fixed x we compute the point-wise optimal value c by setting the
derivative to O:

2 1og(1 -+ exp(—))n(x) + log(1 + exp(c))(1 ~ n(x)) = 0
exp(—c) exp(c) _
1+ exp(—c) (x) 1+exp(c)(1_n(x)) =0
_exp(=on(x) —1+n(x)
1+ exp(—c)
1
AT M

o = s (7205)
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BERNOULLI: OPTIMAL CONSTANT MODEL

The optimal constant probability model 7w(x) = 6 w.r.t. the Bernoulli loss for
labels from Y = {0,1} is:

6= arg min Remp(6 Zy

Again, this is the fraction of class-1 observations in the observed data. We can
simply prove this again by setting the derivative of the risk to 0 and solving for
6. The optimal constant score model f(x) = 6 w.r.t. the Bernoulli loss labels

from)Y = {—1,+1}or Y = {0, 1} is:

A . ny ng/n
arg9m|n emp(0) = log - =log n_/n

where n_ and n, are the numbers of negative and positive observations,
respectively.

This again shows a tight (and unsurprising) connection of this loss to log-odds.
Proving this is also a (quite simple) exercise.

Introduction to Machine Learning — 6/7

X X



BERNOULLI-LOSS: NAMING CONVENTION

We have seen three loss functions that are closely related. In the
literature, there are different names for the losses:

L(y,f) = log(1+exp(—yf)) fory e {-1,+1}

L(y,f) = —y-f+log(1+exp(f)) fory e {0,1}

L(y,m) = —ylog(m)—(1—y)log(1—m) forye{0,1}
L(y,7) = —%Iog(w)—1;ylog(1—w) fory e {—1,+1}

are equally referred to as Bernoulli, Binomial, logistic, log loss, or
cross-entropy (showing equivalence is a simple exercise).
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