
Introduction to Machine Learning

Advanced Risk Minimization
Bias-Variance Decomposition

Learning goals

Understand how to decompose the
generalization error of a learner into

bias of the learner
variance of the learner
inherent noise in the data



BIAS-VARIANCE DECOMPOSITION

Let us take a closer look at the generalization error of a learning
algorithm IL. This is the expected error of an induced model f̂Dn , on
training sets of size n, when applied to a fresh, random test observation.

GEn (IL) = EDn∼Pn
xy ,(x,y)∼Pxy

(
L
(

y , f̂Dn(x)
))

= EDn,xy

(
L
(

y , f̂Dn(x)
))

We therefore need to take the expectation over all training sets of size
n, as well as the independent test observation.
For the squared loss, there is a nice additive decomposition of GEn (IL)
into three components.∗

Hence we assume that the data is generated by

y = ftrue(x) + ϵ ,

with zero-mean homoskedastic error ϵ ∼ (0, σ2) independent of x.

∗ Similar decomps also exist for other losses expressible as Bregman divergences (e.g.

cross-entropy). One exception is the 0/1 loss (Brown and Ali 2024)
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BIAS-VARIANCE DECOMPOSITION / 2

GEn (IL) =

σ2︸︷︷︸
Variance of the data

+Exy

[
VarDn

(
f̂Dn(x) | x, y

)]
︸ ︷︷ ︸

Variance of learner at (x,y)

+Exy

[((
ftrue(x)−EDn

(
f̂Dn(x)

))2
| x, y

)]
︸ ︷︷ ︸

Squared bias of learner at (x,y)

1 The first term expresses the variance of the data. This is pure
noise in the data. Also called Bayes, intrinsic or irreducible error.
No matter what we do, we will never get below this error.

2 The second term expresses, on average, how much f̂Dn(x)
fluctuates around test points if we vary the training data.
Expresses also the learner’s tendency to learn random things
irrespective of the real signal (overfitting).

3 The third term says how much we are "off" on average at test
locations (underfitting). Models with high capacity typically have
low bias and vice versa.
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BIAS-VARIANCE DECOMPOSITION / 3

Illustration: Let us consider the following example. We will generate a
dataset using the following model :

y = x +
x2

2
+ ϵ , ϵ ∼ N(0, 1)

The data is then split into a training set and a test set.
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BIAS-VARIANCE DECOMPOSITION / 4

To obtain estimates for the bias and variance, we will train several
models by sampling with replacement from the training data. This is
commonly known as bootstrapping.

First, we train several (low capacity) linear models (polynomial of
degree d = 1).
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BIAS-VARIANCE DECOMPOSITION / 5

By creating several models, we obtain the average model over different
samples of the training dataset.
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BIAS-VARIANCE DECOMPOSITION / 6

We can now estimate the (squared) bias, by computing the average
squared difference between the average model and the true model, at
the test point locations.
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BIAS-VARIANCE DECOMPOSITION / 7

We compute the average variance of the predictions of the models we
trained at the test point locations.

GEn (IL) ≈ 1 + 1.628 + 0.135 = 2.763

The biggest component of the generalization error is the bias.

Computing the MSE in the usual way for each model, via L2 loss,
and then averaging over models gives rise to nearly the same
value, as expected
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BIAS-VARIANCE DECOMPOSITION / 8

We can now check whether this alternative computation of the GE is correct

So, we simply compute the MSE in the standard fashion for each model

So for each model we compute the L2 loss at each data point, then average

Then we average these MSEs over all models

Result = 2.72, would be closer if we average over more models and test points
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BIAS-VARIANCE DECOMPOSITION / 9

We will repeat the same procedure, but use a high-degree polynomial
(d = 7) with more capacity.
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BIAS-VARIANCE DECOMPOSITION / 10

GEn (IL) ≈ 1 + 0.139 + 1.963 = 3.102

The generalization error is higher than before

Even though the bias is lower, the variance of the learner is higher.
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BIAS-VARIANCE DECOMPOSITION / 11

What happens if we use a model with the same complexity as the true
model (quadratic polynomial)?
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BIAS-VARIANCE DECOMPOSITION / 12

GEn (IL) ≈ 1 + 0.008 + 0.082 = 1.091

The generalization error is the lowest at this complexity.

The variance of the data acts as a lower bound.
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CAPACITY AND OVERFITTING

Credit: Ian Goodfellow

The performance of a learner depends on its ability to
1 fit the training data well
2 generalize to new data

Failure of the first point is called underfitting

Failure of the second item is called overfitting
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CAPACITY AND OVERFITTING / 2

Credit: Ian Goodfellow

The tendency of a model to underfit/overfit is a function of its
capacity, determined by the type of hypotheses it can learn.

Usually, low bias means high capacity, which in turn means a
higher chance of overfitting

Low-bias models usually have also higher variance

For such models, regularization (we discuss later) is essential

Even for correctly specified models, the generalization error is
lower-bounded by the irreducible noise σ2
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APPROXIMATION AND ESTIMATION Brown and Ali 2024

The Bias-Variance decomp is often confused or equated with the
related (but different) decomp of excess risk into estimation and
approximation error.

R(̂fH)−R(f ∗Hall
)︸ ︷︷ ︸

excess risk

= R(̂fH)−R(f ∗H)︸ ︷︷ ︸
estimation error

+R(f ∗H)−R(f ∗Hall
)︸ ︷︷ ︸

approx. error

Both are commonly described using the same figure and analogies

Credit: Brown and Ali 2024

NB: It should be noted that the bias-variance decomp. only holds for certain losses,

while the above decomposition is universal.
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APPROX./ESTIMATION ERROR Brown and Ali 2024

The approx. error is a structural property of H.

The estimation error is random due to dependence on data in f̂

Estimation error arises because we choose f ∈ H with limited
training data using Remp instead of R

Knowing f̂H ∈ arg inf f∈HRemp(f ) assumes we found a global minimizer
of Remp, which is often impossible (e.g. DNNs).

In practice, optimizing Remp gives us our ’best guess’ f̃H ∈ H of f̂H. We
can now decompose its excess risk finer as

R(̃fH)−R(f ∗Hall
)︸ ︷︷ ︸

excess risk

= R(̃fH)−R(̂fH)︸ ︷︷ ︸
optim. error

+R(̂fH)−R(f ∗H)︸ ︷︷ ︸
estimation error

+R(f ∗H)−R(f ∗Hall
)︸ ︷︷ ︸

approx. error

Note that the optimization error can be negative, even though
Remp(̃fH) ≥ Remp(̂fH) always holds.
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APPROX./ESTIMATION ERROR Brown and Ali 2024 / 2

We can further decompose estimation error more finely by defining the
centroid model or ’systematic’ model part.

Given f̂H ∈ argminf∈HRemp(f ) the centroid model under squared loss
is the mean prediction at each x over all Dn, f ◦H := EDn∼Pn

xy
[̂fH],.

With f ◦H we can decompose the expected estimation error as

EDn∼Pn
xy

[
R(̂fH)−R(f ∗H)

]
︸ ︷︷ ︸

expected estimation error

= EDn∼Pn
xy

[
R(̂fH)−R(f ◦H)

]
︸ ︷︷ ︸

estimation variance

+R(f ◦H)−R(f ∗H)︸ ︷︷ ︸
estimation bias

estimation bias measures distance of centroid model to risk
minimizer over H
estimation variance measures spread of ERM around centroid
model induced by randomness due to Dn
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APPROX./ESTIMATION ERROR Brown and Ali 2024 / 3

We can now connect the derived quantities back to bias and variance and see
how they differ. As we see, bias is not only approx. error and variance is not
estimation error.

bias = approximation error + estimation bias

variance = optimization error + estimation variance

Credit: Brown and Ali 2024

NB: For special case of LM and squared loss (OLS), we have zero optim. error and estimation

bias. Hence both decompositions agree there.
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