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NOISY EVALUATIONS

In many real-life applications, we cannot access the true function values
f (x) but only a noisy version thereof

f (x) + ϵ(x)

For the sake of simplicity, we assume ϵ(x) ∼ N
(
0, σ2

ϵ

)
for now
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In many real-life applications, we cannot access the true function values
f (x) but only a noisy version thereof

f (x) + ϵ(x)

For the sake of simplicity, we assume ϵ(x) ∼ N
(
0, σ2

ϵ

)
for now

Examples:

HPO (due to non-deterministic learning algorithm and/or
resampling technique)

Oil drilling optimization (an oil sample is only an estimate)

Robot gait optimization (velocity of a run of a robot is an estimate
of true velocity)
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NOISY EVALUATIONS

This raises the following problems:

Surrogate modeling: So far we used an interpolating GP that is
based on noise-free observations; as a consequence, the variance
is modeled as 0

s2(x[i]) = 0

for design points (x[i], y [i]) ∈ D[t]. This is problematic.

Acquisition functions: Most acquisition functions are based on
the best observed value fmin so far. If evaluations are noisy, we do
not know this value (it is a random variable).

Final best point: The design point evaluated best is not
necessarily the true best point in design (overestimation).
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SURROGATE MODEL

In case of noisy evaluations, a
nugget-effect GP (GP regression)
should be used instead of an
interpolating GP.

The posterior predictive distribution
for a new test point x ∈ S under a
GP assuming homoscedastic noise
(σ2

ϵ ) is:

Y (x) | x,D[t] ∼ N
(

f̂ (x), ŝ2(x)
)

with

f̂ (x) = k(x)⊤(K + σ2
ϵ It)−1y

ŝ2(x) = k(x, x)− k(x)⊤(K + σ2
ϵ It)−1k(x)
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NOISY ACQUISITION FUNCTIONS: AEI

Augmented Expected Improvement (Huang et al., 2006)

aAEI(x) = aEIfmin∗
(x)

(
1 − σϵ√

ŝ2(x) + σ2
ϵ

)
.

Here, aEIfmin∗
denotes the Expected Improvement with Plugin.

It uses the effective best solution as a plugin for the (unknown) best
observed value fmin

fmin∗ = min
x∈{x[1],...,x[t]}

f̂ (x) + cŝ(x),

where c > 0 is a constant that controls the risk aversion.

σ2
ϵ is the nugget-effect as estimated by the GP regression.
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NOISY ACQUISITION FUNCTIONS: AEI / 2

In addition, it takes into account the
nugget-effect σ2

ϵ by a penalty term:(
1 − σϵ√

ŝ2(x) + σ2
ϵ

)

The penalty is justified to “account
for the diminishing return of
additional replicates as the
predictions become more accurate”
(Huang et al., 2006)

Designs with small predictive variance ŝ2(x) are penalized in favor
of more exploration.

If σ2
ϵ = 0 (noise-free), the AEI corresponds to the EI with plugin.
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REINTERPOLATION

Clean noise from the model and then apply a general acquisition
function (EI, PI, LCB, ...)

The RP suggests to build two models: a nugget-effect GP (regression
model; left) and then, on the predictions from the first model (grey), an
interpolating GP (right)
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REINTERPOLATION

Algorithm Reinterpolation Procedure
1: Build a nugget-effect GP model based on noisy evaluations
2: Compute predictions for all points in the design f̂ (x[1]), . . . , f̂ (x[t])

3: Train an interpolating GP on
{(

x[1], f̂ (x[1])
)
, . . . ,

(
x[t], f̂ (x[t])

)}
4: Based on the interpolating model, obtain a new candidate using a noise-free acqui-

sition function
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IDENTIFICATION OF FINAL BEST POINT

Another problem is the identification of a final best point:

Assume that all evaluations are noisy

The probability is high that by chance
bad points get overrated
good points get overlooked
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IDENTIFICATION OF FINAL BEST POINT / 2

Possibilities to reduce the risk of falsely returning a bad point:

Return the best predicted point: argminx∈{x[1],...,x[t]} f̂ (x)

Repeated evaluations of the final point: infer guarantees about
final point (however if final point is “bad” unclear how to find a
better one)

Repeated evaluations of all design points: reduce noise during
optimization and risk of falsely returning a bad point

More advanced replication strategies, e.g. incumbent strategies:
also re-evaluate the “incumbent” in each iteration
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