Optimization in Machine Learning

Bayesian Optimization Noisy Bayesian Optimization

X \times \times

Learning goals

- Noisy surrogate modeling
- Noisy acquisition functions
- **•** Final best point

NOISY EVALUATIONS

In many real-life applications, we cannot access the true function values *f*(**x**) but only a **noisy** version thereof

 $f(\mathbf{x}) + \epsilon(\mathbf{x})$

For the sake of simplicity, we assume $\epsilon(\mathbf{x}) \sim \mathcal{N}\left(0, \sigma_{\epsilon}^2\right)$ for now

NOISY EVALUATIONS

In many real-life applications, we cannot access the true function values *f*(**x**) but only a **noisy** version thereof

 $f(\mathbf{x}) + \epsilon(\mathbf{x})$

For the sake of simplicity, we assume $\epsilon(\mathbf{x}) \sim \mathcal{N}\left(0, \sigma_{\epsilon}^2\right)$ for now

 $\times\overline{\times}$

Examples:

- HPO (due to non-deterministic learning algorithm and/or resampling technique)
- Oil drilling optimization (an oil sample is only an estimate)
- Robot gait optimization (velocity of a run of a robot is an estimate of true velocity)

NOISY EVALUATIONS

This raises the following problems:

Surrogate modeling: So far we used an interpolating GP that is based on noise-free observations; as a consequence, the variance is modeled as 0

$$
s^2(\boldsymbol{x}^{[i]})=0
$$

for design points $(\mathbf{x}^{[i]}, y^{[i]}) \in \mathcal{D}^{[t]}$. This is problematic.

- **Acquisition functions:** Most acquisition functions are based on the best observed value *f*_{min} so far. If evaluations are noisy, we do not know this value (it is a random variable).
- **Final best point:** The design point evaluated best is not necessarily the true best point in design (overestimation).

$$
\begin{array}{c}\n\times 0 \\
\times 0 \\
\hline\n\end{array}
$$

SURROGATE MODEL

In case of noisy evaluations, a nugget-effect GP (GP regression) should be used instead of an interpolating GP.

The posterior predictive distribution for a new test point $\mathbf{x} \in \mathcal{S}$ under a GP assuming homoscedastic noise (σ^2_{ϵ}) is:

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\end{array}
$$

$$
Y(\boldsymbol{x})\mid \boldsymbol{x}, \mathcal{D}^{[t]} \sim \mathcal{N}\left(\hat{\textit{f}}(\boldsymbol{x}), \hat{s}^2(\boldsymbol{x})\right)
$$

with

$$
\hat{f}(\mathbf{x}) = k(\mathbf{x})^{\top} (K + \sigma_{\epsilon}^2 \mathbf{l}_t)^{-1} \mathbf{y} \n\hat{s}^2(\mathbf{x}) = k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x})^{\top} (K + \sigma_{\epsilon}^2 \mathbf{l}_t)^{-1} k(\mathbf{x})
$$

NOISY ACQUISITION FUNCTIONS: AEI

Augmented Expected Improvement (*Huang et al., 2006*)

$$
a_{\text{AEI}}(\mathbf{x}) = a_{\text{EI}_{f_{\text{min}_*}}}(\mathbf{x}) \Bigg(1 - \frac{\sigma_{\epsilon}}{\sqrt{\hat{s}^2(\mathbf{x}) + \sigma_{\epsilon}^2}}\Bigg).
$$

Here, *^a*EI*f*min[∗] denotes the **Expected Improvement with Plugin**. It uses the **effective best solution** as a plugin for the (unknown) best observed value f_{\min}

$$
f_{\min_*} = \min_{\mathbf{x} \in \{\mathbf{x}^{[1]}, \dots, \mathbf{x}^{[t]}\}} \hat{f}(\mathbf{x}) + c\hat{s}(\mathbf{x}),
$$

where $c > 0$ is a constant that controls the risk aversion.

 σ_{ϵ}^2 is the nugget-effect as estimated by the GP regression.

 $\overline{\mathbf{x}\ \mathbf{x}}$

NOISY ACQUISITION FUNCTIONS: AEI / 2

In addition, it takes into account the nugget-effect σ_{ϵ}^2 by a penalty term:

$$
\left(1-\frac{\sigma_\epsilon}{\sqrt{\mathbf{\hat{s}}^2(\mathbf{x})+\sigma_\epsilon^2}}\right)
$$

The penalty is justified to "account for the diminishing return of additional replicates as the predictions become more accurate" (*Huang et al., 2006*)

- Designs with small predictive variance $\hat{s}^2(\mathbf{x})$ are penalized in favor of more exploration.
- If $\sigma_{\epsilon}^2 = 0$ (noise-free), the AEI corresponds to the EI with plugin.

REINTERPOLATION

Clean noise from the model and then apply a general acquisition function (EI, PI, LCB, ...)

The RP suggests to build **two models**: a nugget-effect GP (regression model; left) and then, on the predictions from the first model (grey), an interpolating GP (right)

 \times \times

REINTERPOLATION

Algorithm Reinterpolation Procedure

- 1: Build a nugget-effect GP model based on noisy evaluations
- 2: Compute predictions for all points in the design $\hat{f}(\mathbf{x}^{[1]}), \ldots, \hat{f}(\mathbf{x}^{[t]})$
- 3: Train an interpolating GP on $\left\{\left(\mathbf{x}^{[1]}, \hat{f}(\mathbf{x}^{[1]})\right), \ldots, \left(\mathbf{x}^{[t]}, \hat{f}(\mathbf{x}^{[t]})\right)\right\}$
- 4: Based on the interpolating model, obtain a new candidate using a noise-free acquisition function

IDENTIFICATION OF FINAL BEST POINT

Another problem is the identification of a final best point:

- Assume that all evaluations are noisy
- The probability is high that **by chance**
	- bad points get overrated
	- good points get overlooked

 \mathbf{X}

IDENTIFICATION OF FINAL BEST POINT /2

Possibilities to reduce the risk of falsely returning a bad point:

- Return the best predicted point: $\mathsf{arg} \min_{\mathbf{x} \in \{\mathbf{x}^{[1]}, \ldots, \mathbf{x}^{[t]}\}} \hat{f}(\mathbf{x})$
- Repeated evaluations of the final point: infer guarantees about final point (however if final point is "bad" unclear how to find a better one)
- Repeated evaluations of all design points: reduce noise during optimization and risk of falsely returning a bad point
- More advanced replication strategies, e.g. incumbent strategies: also re-evaluate the "incumbent" in each iteration