Optimization in Machine Learning

Bayesian Optimization
Noisy Bayesian Optimization

Learning goals
@ Noisy surrogate modeling
@ Noisy acquisition functions
@ Final best point
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NOISY EVALUATIONS

In many real-life applications, we cannot access the true function values
f(x) but only a noisy version thereof

f(x) + e(x)

For the sake of simplicity, we assume e(x) ~ A (0, 02) for now
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NOISY EVALUATIONS

In many real-life applications, we cannot access the true function values
f(x) but only a noisy version thereof

f(x) + €(x)

For the sake of simplicity, we assume e(x) ~ A (0, 02) for now

Examples:
@ HPO (due to non-deterministic learning algorithm and/or
resampling technique)
@ Qil drilling optimization (an oil sample is only an estimate)

@ Robot gait optimization (velocity of a run of a robot is an estimate
of true velocity)
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NOISY EVALUATIONS

This raises the following problems:

@ Surrogate modeling: So far we used an interpolating GP that is
based on noise-free observations; as a consequence, the variance
is modeled as 0 _

Sxhy =0
for design points (x[1, y1) € DI, This is problematic.
@ Acquisition functions: Most acquisition functions are based on

the best observed value f,;, so far. If evaluations are noisy, we do
not know this value (it is a random variable).

@ Final best point: The design point evaluated best is not
necessarily the true best point in design (overestimation).
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SURROGATE MODEL

In case of noisy evaluations, a
nugget-effect GP (GP regression) ’
should be used instead of an
interpolating GP.

The posterior predictive distribution

for a new test point x € S under a

GP assuming homoscedastic noise
(02?)is: 2

Y(x) | x, Dl ~ A (?(x), §2(x))
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NOISY ACQUISITION FUNCTIONS: AEI

Augmented Expected Improvement (Huang et al., 2006)

apei(x) = aElr .. (x) (1 a \/32(1374-05)

Here, a, denotes the Expected Improvement with Plugin.
It uses the effective best solution as a plugin for the (unknown) best
observed value fmin

fonin, = min f(x) + cs(x),
xe{xl,.. x(1}

where ¢ > 0 is a constant that controls the risk aversion.

o2 is the nugget-effect as estimated by the GP regression.
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NOISY ACQUISITION FUNCTIONS: AEIl /2

In addition, it takes into account the
nugget-effect af by a penalty term:

L — | :
82(x) + o2 ‘

The penalty is justified to “account  o0s
for the diminishing return of
additional replicates as the

predictions become more accurate”
(Huang et al., 2006)

@ Designs with small predictive variance §2(x) are penalized in favor
of more exploration.

@ If o2 = 0 (noise-free), the AEI corresponds to the El with plugin.
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REINTERPOLATION

Clean noise from the model and then apply a general acquisition
function (El, PI, LCB, ...)

The RP suggests to build two models: a nugget-effect GP (regression
model; left) and then, on the predictions from the first model (grey), an
interpolating GP (right)
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REINTERPOLATION

Algorithm Reinterpolation Procedure

1: Build a nugget-effect GP model based on noisy gvaluationsA x

2: Compute predictions for all points in the design F(x"), ..., #(x[1)

3: Train an interpolating GP on {(xm, ?(xm)) . (x[t], ?(x[’])) }

4: Based on the interpolating model, obtain a new candidate using a noise-free acqui- x x
sition function
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IDENTIFICATION OF FINAL BEST POINT

Another problem is the identification of a final best point:
@ Assume that all evaluations are noisy
@ The probability is high that by chance

e bad points get overrated
e good points get overlooked
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IDENTIFICATION OF FINAL BEST POINT /2

Possibilities to reduce the risk of falsely returning a bad point:
@ Return the best predicted point: arg miny g1 iy f(x)

@ Repeated evaluations of the final point: infer guarantees about
final point (however if final point is “bad” unclear how to find a
better one)

@ Repeated evaluations of all design points: reduce noise during
optimization and risk of falsely returning a bad point

@ More advanced replication strategies, e.g. incumbent strategies:
also re-evaluate the “incumbent” in each iteration
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