Optimization in Machine Learning

Bayesian Optimization Important Surrogate Models

× × ×

Learning goals

- Search space / input data peculiarities in black box problems
- Gaussian process
- Random forest

SURROGATE MODELS

Desiderata:

- Regression model (there are also classification approaches)
- Non-linear local model
- Accurate predictions (especially for small sample sizes)
- Often: uncertainty estimates
- Robust, works often well without human modeler intervention

Depending on the application:

- Can handle different types of inputs (numerical and categorical)
- Can handle dependencies (i.e., hierarchical input)

× × 0 × × ×

GAUSSIAN PROCESS

Posterior predictive distribution for test point $\mathbf{x} \in S$:

$$Y(\mathbf{x}) \mid \mathbf{x}, \mathcal{D}^{[t]} \sim \mathcal{N}\left(\hat{f}(\mathbf{x}), \hat{s}^2(\mathbf{x})\right)$$

with

$$\hat{f}(\mathbf{x}) = k(\mathbf{x})^{\top} \mathbf{K}^{-1} \mathbf{y}$$

$$\hat{s}^{2}(\mathbf{x}) = k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x})^{\top} \mathbf{K}^{-1} k(\mathbf{x})$$

Kernel method, based on kernel / Gram matrix $\boldsymbol{K} := \left(k(\boldsymbol{x}^{[i]}, \boldsymbol{x}^{[j]})\right)_{i,j}$

GAUSSIAN PROCESS / 2

Example kernel functions:

• Radial basis function kernel (also known as Gauss kernel):

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{d(\mathbf{x}, \mathbf{x}')^2}{2l^2}\right)$$

- *I* length scale; $d(\cdot, \cdot)$ Euclidean distance
- infinitely differentiable very "smooth"
- Matérn kernels:

$$k(\mathbf{x},\mathbf{x}') = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(\frac{\sqrt{2\nu}}{l} d(\mathbf{x},\mathbf{x}') \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}}{l} d(\mathbf{x},\mathbf{x}') \right)$$

- *I* length scale; *d*(·, ·) Euclidean distance; *K_ν*(·) modified Bessel function; Γ(·) Gamma function
- for $\nu = 3/2$ once differentiable, for $\nu = 5/2$ twice differentiable
- Popular choice as a kernel function when using a GP as SM

GAUSSIAN PROCESS / 3

Pros:

- Smooth, local, powerful estimator, also for small data
- GPs yield well-calibrated uncertainty estimates
- The posterior predictive distribution under a GP is normal

Cons:

- Vanilla GPs scale cubic in the number of data points
- Can natively only handle numeric features Mixed inputs / dependencies require special kernels
- GPs aren't that robust; numerical problems can occur
- Can be sensitive to the choice of kernel and hyperparameters

× 0 0 × 0 × ×

RANDOM FOREST

- Bagging ensemble
- Fit B decision trees on bootstrap samples
- Feature subsampling

× × 0 × × ×

"extratrees" / random splits:

- Choose split location uniformly at random
- Results in a "smoother" mean prediction

RANDOM FOREST - MEAN AND VARIANCE

- Let *f*_b : S → ℝ be the mean prediction of a decision tree b (mean of all data points in the same node as observation **x** ∈ S)
- Let ŝ²_b : S → ℝ be the variance prediction (variance of all data points in the same node as observation x ∈ S)
- Mean prediction of forest: $\hat{f} : S \to \mathbb{R}$, $\mathbf{x} \mapsto \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}(\mathbf{x})$
- Variance prediction of forest: ŝ² : S → ℝ,
 x ↦ (¹/_B ∑^B_{b=1} ŝ²_b(**x**) + f̂_b(**x**)²) f̂(**x**)²
 (law of total variance assuming a mixture of *B* models)
- Alternative variance estimator:
 - (infinitesimal) Jackknife
- Variance prediction derived from randomness of individual trees
 - Bagging / boostrap samples
 - Features sampled at random
 - (randomized split locations in the case of "extratrees")

RANDOM FOREST - DIFFERENT CHOICES

× × ×

Optimization in Machine Learning - 7 / 9

RANDOM FOREST

Pros:

- Cheap(er) to train
- Scales well with the number of data points
- Scales well with the number of dimensions
- Can easily handle hierarchical mixed spaces. Either via imputation or directly respecting dependencies in the tree structure
- Robust

Cons:

- Suboptimal uncertainty estimates
- Not really Bayesian (no real posterior predictive distribution)
- Poor extrapolation

× 0 0 × 0 × ×

EXAMPLE

Minimize the 2D Ackley Function using BO_GP (GP with Matérn 3/2, EI), BO_RF (standard Random Forest, EI), BO_RF_ET (Random Forest with extratrees, EI) or a random search:

× 0 0 × × ×

Strong BO_GP performance. BO_RF and BO_RF_ET not too bad either. BO_RF_ET maybe slightly better final performance than BO_RF.