
Optimization in Machine Learning

Bayesian Optimization
Important Surrogate Models

Learning goals
Search space / input data
peculiarities in black box problems

Gaussian process

Random forest



SURROGATE MODELS

Desiderata:

Regression model (there are also classification approaches)

Non-linear local model

Accurate predictions (especially for small sample sizes)

Often: uncertainty estimates

Robust, works often well without human modeler intervention

Depending on the application:

Can handle different types of inputs (numerical and categorical)

Can handle dependencies (i.e., hierarchical input)

© Optimization in Machine Learning – 1 / 9



GAUSSIAN PROCESS

Posterior predictive distribution for test point x ∈ S:

Y (x) | x,D[t] ∼ N
(

f̂ (x), ŝ2(x)
)

with

f̂ (x) = k(x)⊤K−1y

ŝ2(x) = k(x, x)− k(x)⊤K−1k(x)

Kernel method, based on kernel / Gram matrix K :=
(
k(x[i], x[j])

)
i,j

© Optimization in Machine Learning – 2 / 9



GAUSSIAN PROCESS / 2

Example kernel functions:

Radial basis function kernel (also known as Gauss kernel):

k(x, x
′
) = exp

(
−d(x,x

′
)2

2l2

)
l length scale; d(·, ·) Euclidean distance
infinitely differentiable - very “smooth”

Matérn kernels:
k(x, x

′
) = 1

Γ(ν)2ν−1

(√
2ν
l d(x, x

′
)
)ν

Kν

(√
2ν
l d(x, x

′
)
)

l length scale; d(·, ·) Euclidean distance; Kν(·) modified
Bessel function; Γ(·) Gamma function
for ν = 3/2 once differentiable, for ν = 5/2 twice
differentiable
Popular choice as a kernel function when using a GP as SM

© Optimization in Machine Learning – 3 / 9



GAUSSIAN PROCESS / 3

Pros:

Smooth, local, powerful estimator, also for small data

GPs yield well-calibrated uncertainty estimates

The posterior predictive distribution under a GP is normal

Cons:

Vanilla GPs scale cubic in the number of data points

Can natively only handle numeric features
Mixed inputs / dependencies require special kernels

GPs aren’t that robust; numerical problems can occur

Can be sensitive to the choice of kernel and hyperparameters

© Optimization in Machine Learning – 4 / 9



RANDOM FOREST

Bagging ensemble
Fit B decision trees on bootstrap samples
Feature subsampling

“extratrees” / random splits:
Choose split location uniformly at random
Results in a “smoother” mean prediction

© Optimization in Machine Learning – 5 / 9



RANDOM FOREST - MEAN AND VARIANCE

Let f̂b : S → R be the mean prediction of a decision tree b (mean
of all data points in the same node as observation x ∈ S)

Let ŝ2
b : S → R be the variance prediction (variance of all data

points in the same node as observation x ∈ S)
Mean prediction of forest: f̂ : S → R, x 7→ 1

B

∑B
b=1 f̂b(x)

Variance prediction of forest: ŝ2 : S → R,

x 7→
(

1
B

∑B
b=1 ŝ2

b(x) + f̂b(x)2
)
− f̂ (x)2

(law of total variance assuming a mixture of B models)

Alternative variance estimator:

(infinitesimal) Jackknife

Variance prediction derived from randomness of individual trees

Bagging / boostrap samples
Features sampled at random
(randomized split locations in the case of “extratrees”)

© Optimization in Machine Learning – 6 / 9



RANDOM FOREST - DIFFERENT CHOICES

© Optimization in Machine Learning – 7 / 9



RANDOM FOREST

Pros:

Cheap(er) to train

Scales well with the number of data points

Scales well with the number of dimensions

Can easily handle hierarchical mixed spaces. Either via imputation
or directly respecting dependencies in the tree structure

Robust

Cons:

Suboptimal uncertainty estimates

Not really Bayesian (no real posterior predictive distribution)

Poor extrapolation

© Optimization in Machine Learning – 8 / 9



EXAMPLE

Minimize the 2D Ackley Function using BO_GP (GP with Matérn 3/2,
EI), BO_RF (standard Random Forest, EI), BO_RF_ET (Random
Forest with extratrees, EI) or a random search:

Strong BO_GP performance. BO_RF and BO_RF_ET not too bad either. BO_RF_ET

maybe slightly better final performance than BO_RF.

© Optimization in Machine Learning – 9 / 9


