Optimization in Machine Learning

Bayesian Optimization
Important Surrogate Models

oy W / Learning goals
NG/ /
R \/ TN \/ @ Search space / input data
: peculiarities in black box problems

@ Gaussian process

/
. (2] . f\/ R @ Random forest
NN
O

X X



SURROGATE MODELS

Desiderata:
@ Regression model (there are also classification approaches)
@ Non-linear local model
@ Accurate predictions (especially for small sample sizes)
@ Often: uncertainty estimates
@ Robust, works often well without human modeler intervention

Depending on the application:
@ Can handle different types of inputs (numerical and categorical)
@ Can handle dependencies (i.e., hierarchical input)
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GAUSSIAN PROCESS

Posterior predictive distribution for test point x € S:
Y(x) | %, D1 ~ A (), 82(x) )
with

fx) = k(x)'K 'y
B(x) = k(x,x) —k(x)"K "k(x)

Kernel method, based on kernel / Gram matrix K := (k(x1,x1)),

P
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GAUSSIAN PROCESS /2

Example kernel functions:

@ Radial basis function kernel (also known as Gauss kernel):
o d(x,x,)2
k(X, X ) = exp —Top

e /length scale; d(-, -) Euclidean distance
o infinitely differentiable - very “smooth”

@ Matérn kernels: y
k(x,X) = rpemr (L2d(x X)) K, (22d(x,X))

e /length scale; d(-, -) Euclidean distance; K, (-) modified
Bessel function; I'(-) Gamma function

e for v = 3/2 once differentiable, for v = 5/2 twice
differentiable

e Popular choice as a kernel function when using a GP as SM
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GAUSSIAN PROCESS /3

Pros:

@ Smooth, local, powerful estimator, also for small data

@ GPs yield well-calibrated uncertainty estimates

@ The posterior predictive distribution under a GP is normal
Cons:

@ Vanilla GPs scale cubic in the number of data points

@ Can natively only handle numeric features
Mixed inputs / dependencies require special kernels

@ GPs aren’t that robust; numerical problems can occur
@ Can be sensitive to the choice of kernel and hyperparameters
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RANDOM FOREST

@ Bagging ensemble
@ Fit B decision trees on bootstrap samples
@ Feature subsampling

classification regression
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“extratrees” / random splits:
@ Choose split location uniformly at random
@ Results in a “smoother” mean prediction
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RANDOM FOREST - MEAN AND VARIANCE

@ Let ?b : S — R be the mean prediction of a decision tree b (mean
of all data points in the same node as observation x € S)

@ Let 82 : S — R be the variance prediction (variance of all data
points in the same node as observation x € S)

@ Mean prediction of forest: f: S — R, x — £ 35, f5(x)
@ Variance prediction of forest: 82 : S — R,
x> (01 80 + B(x)?) — F(x)?
(law of total variance assuming a mixture of B models)
@ Alternative variance estimator:
e (infinitesimal) Jackknife
@ Variance prediction derived from randomness of individual trees

e Bagging / boostrap samples
e Features sampled at random
e (randomized split locations in the case of “extratrees”)
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RANDOM FOREST - DIFFERENT CHOICES
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RANDOM FOREST

Pros:
@ Cheap(er) to train
@ Scales well with the number of data points
@ Scales well with the number of dimensions

@ Can easily handle hierarchical mixed spaces. Either via imputation
or directly respecting dependencies in the tree structure

@ Robust
Cons:
@ Suboptimal uncertainty estimates
@ Not really Bayesian (no real posterior predictive distribution)
@ Poor extrapolation
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EXAMPLE

Minimize the 2D Ackley Function using BO_GP (GP with Matérn 3/2,
El), BO_RF (standard Random Forest, El), BO_RF_ET (Random
Forest with extratrees, El) or a random search:

Best Objective Value

30 40 50

0 10 20
N2 Function Evaluations

Method BO_GP — BO_RF — BO_RF_ET Random

Strong BO_GP performance. BO_RF and BO_RF_ET not too bad either. BO_RF_ET
maybe slightly better final performance than BO_RF.
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