# **Optimization in Machine Learning**

# Bayesian Optimization Posterior Uncertainty and Acquisition Functions II





#### Learning goals

- Probability of improvement
- Expected improvement

**Goal**: Find  $\mathbf{x}^{[t+1]}$  that maximizes the **Probability of Improvement** (PI):

$$a_{\mathsf{Pl}}(\mathbf{x}) = \mathbb{P}(Y(\mathbf{x}) < f_{\min}) = \Phi\left(rac{f_{\min} - \hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}
ight)$$

where  $\Phi(\cdot)$  is the standard normal cdf (assuming Gaussian posterior)



Left: The green vertical line represents  $f_{\min}$ . Right:  $a_{PI}(\mathbf{x})$  is given by the black area.

 $\times \times$ 

**Goal**: Find  $\mathbf{x}^{[t+1]}$  that maximizes the **Probability of Improvement** (PI):

$$a_{\mathsf{Pl}}(\mathbf{x}) = \mathbb{P}(Y(\mathbf{x}) < f_{\mathsf{min}}) = \Phi\left(\frac{f_{\mathsf{min}} - \hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right)$$

where  $\Phi(\cdot)$  is the standard normal cdf (assuming Gaussian posterior)

**Note:**  $a_{PI}(\mathbf{x}) = 0$  for design points  $\mathbf{x}$ , since

- $\hat{s}(\mathbf{x}) = 0$ ,
- $\hat{f}(\mathbf{x}) = f(\mathbf{x}) \ge f_{\min} \quad \Leftrightarrow \quad f_{\min} \hat{f}(\mathbf{x}) \le 0.$

Therefore:

$$\Phi\left(\frac{f_{\min}-\hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right)=\Phi\left(-\infty\right)=0$$

The PI does not take the size of the improvement into account Often it will propose points close to the current  $f_{min}$ 

We use the PI (red line) to propose the next point ...





The red point depicts  $\arg \max_{\mathbf{x} \in S} a_{\mathsf{PI}}(\mathbf{x})$ 

... evaluate that point, refit the SM and propose the next point





(grey point = prev point from last iter)



× 0 0 × 0 × ×

...

In our example, using the PI results in spending plenty of time optimizing the local optimum ...







× 0 0 × 0 × ×

...





× 0 0 × × ×





× 0 0 × × ×

... eventually, we explore other regions ...



× 0 0 × 0 × ×





× 0 0 × × ×

**Goal:** Propose  $\mathbf{x}^{[t+1]}$  that maximizes the **Expected Improvement** (EI):





- We now take the expectation in the tail, instead of the prob as in PI.
- Improvement is always assumed  $\geq$  0.

Х

×х

**Goal:** Propose  $\mathbf{x}^{[t+1]}$  that maximizes the **Expected Improvement** (EI):



 $a_{\mathsf{EI}}(\mathbf{x}) = \mathbb{E}(\max\{f_{\mathsf{min}} - Y(\mathbf{x}), 0\})$ 



 $a_{\mathsf{EI}}(\mathbf{x}) = (f_{\mathsf{min}} - \hat{f}(\mathbf{x}))\Phi\Big(\frac{f_{\mathsf{min}} - \hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}\Big) + \hat{s}(\mathbf{x})\phi\Big(\frac{f_{\mathsf{min}} - \hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}\Big),$ 

•  $a_{\text{EI}}(\mathbf{x}) = 0$  at design points  $\mathbf{x}$ :  $a_{\text{EI}}(\mathbf{x}) = (f_{\min} - \hat{f}(\mathbf{x})) \underbrace{\Phi\left(\frac{f_{\min} - \hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right)}_{=0, \text{ see PI}} + \underbrace{\hat{s}(\mathbf{x})}_{=0} \phi\left(\frac{f_{\min} - \hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right)$ 

We use the EI (red line) to propose the next point ...



× × ×

The red point depicts arg max<sub> $x \in S$ </sub>  $a_{EI}(x)$ 

... evaluate that point, refit the SM and propose the next point





(grey point = prev point from last iter)





× 0 0 × 0 × ×

...









× 0 0 × 0 × ×

The EI is capable of exploration and quickly proposes promising points in areas we have not visited yet



× × 0 × × ×

Here, also a result of well-calibrated uncertainty  $\hat{s}(\mathbf{x})$  of our GP.

# DISCUSSION

- Under some mild conditions: BO with a GP as SM and EI is a **global optimizer**, i.e., convergence to the **global** (!) optimum is guaranteed given unlimited budget
- Cannot be proven for the PI or the LCB
- In theory, this suggests choosing the EI as ACQF
- In practice, LCB works quite well, and EI generates a very multi-modal landscape

Other ACQFs:

- Entropy based: Entropy search, predictive entropy search, max value entropy search
- Knowledge Gradient
- Thompson Sampling

• ...

× 0 0 × 0 × ×