Optimization in Machine Learning

Bayesian Optimization Posterior Uncertainty and Acquisition Functions II

Learning goals

- Probability of improvement
- **•** Expected improvement

Goal: Find $x^{[t+1]}$ that maximizes the **Probability of Improvement** (PI):

$$
a_{\text{PI}}(\mathbf{x}) = \mathbb{P}(Y(\mathbf{x}) < f_{\min}) = \Phi\left(\frac{f_{\min} - \hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right)
$$

where $\Phi(\cdot)$ is the standard normal cdf (assuming Gaussian posterior)

Left: The green vertical line represents f_{min} . **Right:** $a_{PI}(x)$ is given by the black area.

X X

Goal: Find $x^{[t+1]}$ that maximizes the **Probability of Improvement** (PI):

$$
a_{\text{PI}}(\mathbf{x}) = \mathbb{P}(Y(\mathbf{x}) < f_{\text{min}}) = \Phi\left(\frac{f_{\text{min}} - \hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right)
$$

where $\Phi(\cdot)$ is the standard normal cdf (assuming Gaussian posterior)

Note: $a_{PI}(\mathbf{x}) = 0$ for design points **x**, since

 $\hat{s}(\mathbf{x}) = 0$, $\hat{\tau}(\mathbf{x}) = f(\mathbf{x}) \ge f_{\text{min}} \quad \Leftrightarrow \quad f_{\text{min}} - \hat{f}(\mathbf{x}) \le 0.$

Therefore:

$$
\Phi\left(\frac{f_{min}-\hat{f}(\bm{x})}{\hat{s}(\bm{x})}\right)=\Phi\left(-\infty\right)=0
$$

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\circ \\
\hline\n\circ \\
\hline\n\circ\n\end{array}
$$

The PI does not take the size of the improvement into account Often it will propose points close to the current f_{\min}

We use the PI (red line) to propose the next point ...

 \times \times

The red point depicts arg max $_{\mathbf{x} \in \mathcal{S}} a_{\text{PI}}(\mathbf{x})$

... evaluate that point, refit the SM and propose the next point

(grey point = prev point from last iter)

In our example, using the PI results in spending plenty of time optimizing the local optimum ...

... eventually, we explore other regions ...

X **XX**

Goal: Propose $\mathbf{x}^{[t+1]}$ that maximizes the Expected Improvement (EI):

 $a_{\text{El}}(\mathbf{x}) = \mathbb{E}(\max\{f_{\min} - Y(\mathbf{x}), 0\})$

- We now take the expectation in the tail, instead of the prob as in PI.
- \bullet Improvement is always assumed > 0 .

X

 \times \times

Goal: Propose $\mathbf{x}^{[t+1]}$ that maximizes the Expected Improvement (EI):

$$
a_{\text{El}}(\mathbf{x}) = \mathbb{E}(\max\{f_{\text{min}} - Y(\mathbf{x}), 0\})
$$

$$
a_{EI}(\mathbf{x}) = (f_{min} - \hat{f}(\mathbf{x}))\Phi\left(\frac{f_{min} - \hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right) + \hat{s}(\mathbf{x})\phi\left(\frac{f_{min} - \hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right),
$$

 \bullet $a_{\text{E1}}(x) = 0$ at design points **x**: *f*min − ˆ*f*(**x**)

$$
a_{\text{El}}(\mathbf{x}) = (f_{\min} - \hat{f}(\mathbf{x})) \underbrace{\Phi\left(\frac{f_{\min} - \hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right)}_{=0, \text{ see Pl}} + \underbrace{\hat{s}(\mathbf{x})}_{=0} \phi\left(\frac{f_{\min} - \hat{f}(\mathbf{x})}{\hat{s}(\mathbf{x})}\right)
$$

X X

We use the EI (red line) to propose the next point ...

 \times \times

The red point depicts arg max_{$\mathbf{x} \in \mathcal{S}$ *a*_{EI}(\mathbf{x})}

... evaluate that point, refit the SM and propose the next point

(grey point = prev point from last iter)

...

...

X **XX**

...

The EI is capable of exploration and quickly proposes promising points in areas we have not visited yet

X X

Here, also a result of well-calibrated uncertainty $\hat{s}(\mathbf{x})$ of our GP.

DISCUSSION

- Under some mild conditions: BO with a GP as SM and EI is a **global optimizer**, i.e., convergence to the **global** (!) optimum is guaranteed given unlimited budget
- Cannot be proven for the PI or the LCB
- In theory, this suggests choosing the EI as ACQF
- In practice, LCB works quite well, and EI generates a very multi-modal landscape

Other ACQFs:

- Entropy based: Entropy search, predictive entropy search, max value entropy search
- Knowledge Gradient
- Thompson Sampling

...

 \times \times