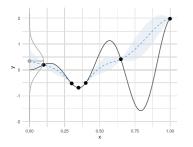
Optimization in Machine Learning

Bayesian Optimization Posterior Uncertainty and Acquisition Functions I

× × 0 × × ×



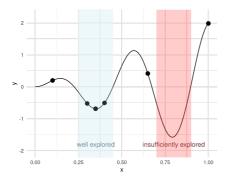
Learning goals

- Bayesian surrogate modeling
- Acquisition functions
- Lower confidence bound

BAYESIAN SURROGATE MODELING

Goal:

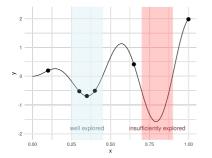
Find trade-off between **exploration** (areas we have not visited yet) and **exploitation** (search around good design points)

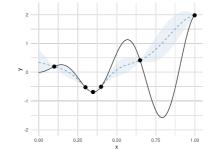


× 0 0 × 0 × ×

BAYESIAN SURROGATE MODELING / 2

- Idea: Use a Bayesian approach to build SM that yields estimates for the posterior mean $\hat{f}(\mathbf{x})$ and the posterior variance $\hat{s}^2(\mathbf{x})$
- $\hat{s}^2(\mathbf{x})$ expresses "confidence"/"certainty" in prediction

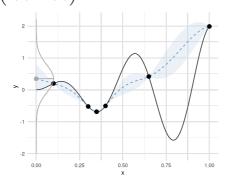




× < 0 × × ×

BAYESIAN SURROGATE MODELING / 3

- Denote by Y | x, D^[t] the (conditional) RV associated with the posterior predictive distribution of a new point x under a SM; will abbreviate it as Y(x)
- Most prominent choice for a SM is a Gaussian process, here $Y(\mathbf{x}) \sim \mathcal{N}(\hat{f}(\mathbf{x}), \hat{s}^2(\mathbf{x}))$



For now we assume an interpolating SM; $\hat{f}(\mathbf{x}) = f(\mathbf{x})$ and $\hat{s}(\mathbf{x}) = 0$ for training points

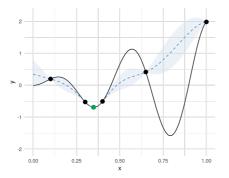
©

× 0 0 × ×

ACQUISITION FUNCTIONS

To sequentially propose new points based on the SM, we make use of so-called acquisition functions $a: S \to \mathbb{R}$

Let $f_{\min} := \min \{ f(\mathbf{x}^{[1]}), \dots, f(\mathbf{x}^{[t]}) \}$ denote the best observed value so far (visualized in green - we will need this later!)



In the examples before we simply used the posterior mean $a(\mathbf{x}) = \hat{f}(\mathbf{x})$ as acquisition function - ignoring uncertainty

 $\times \times$

LOWER CONFIDENCE BOUND

Goal: Find $\mathbf{x}^{[t+1]}$ that minimizes the **Lower Confidence Bound** (LCB):

$$a_{\text{LCB}}(\mathbf{x}) = \hat{f}(\mathbf{x}) - \tau \hat{s}(\mathbf{x})$$

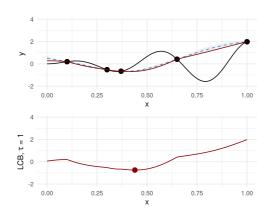
where $\tau >$ 0 is a constant that controls the "mean vs. uncertainty" trade-off

The LCB is conceptually very simple and does **not** rely on distributional assumptions of the posterior predictive distribution under a SM

× 0 0 × 0 × ×

LOWER CONFIDENCE BOUND / 2

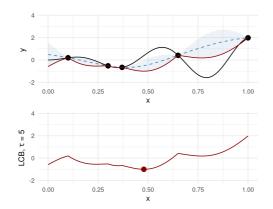
 $au = \mathbf{1}$



Top: Design points and SM showing $\hat{f}(\mathbf{x})$ (blue) and $\hat{f}(\mathbf{x}) - \tau \hat{s}(\mathbf{x})$ (red) Bottom: the red point depicts arg min_{$\mathbf{x} \in S$} $a_{\text{LCB}}(\mathbf{x})$

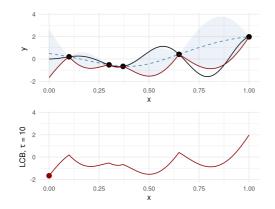
LOWER CONFIDENCE BOUND / 3

au = 5



LOWER CONFIDENCE BOUND / 4

au = 10



× 0 0 × × ×