
Optimization in Machine Learning

Bayesian Optimization
Basic BO Loop and Surrogate Modelling

Learning goals
Initial design

Surrogate modeling

Basic loop



OPTIMIZATION VIA SURROGATE MODELING

Starting point:
We do not know the objective function f : S → R

But we can evaluate f for a few different inputs x ∈ S
For now we assume that those evaluations are noise-free
Idea: Use the data D[t] = {(x[i], y [i])}i=1,...t , y [i] := f (x[i]), to
derive properties about the unknown function f

© Optimization in Machine Learning – 1 / 11



INITIAL DESIGN

Should cover / explore input space sufficiently:

Random design
Latin hypercube sampling
Sobol sampling

Type of design usually has not the largest effect

A more important choice is the size of the initial design

Should neither be too small (bad initial fit) nor too large
(spending too much budget without doing “intelligent”
optimization)
Rule of thumb: 4d

© Optimization in Machine Learning – 2 / 11



LATIN HYPERCUBE SAMPLING

LHS partitions the search
space into bins of equal
probability

Goal is to attain a more even
distribution of sample points
than random sampling

Allow at most one sample per
bin; exactly one sample per
row and column

Marginal histograms RS vs. LHS

© Optimization in Machine Learning – 3 / 11



LATIN HYPERCUBE SAMPLING

Actual sampling of points, e.g., constructed via Maximin:

The minimum distance between any two points in D is
2q = minx∈D,x′∈D ρ(x, x′) (ρ any metric, e.g., Euclidean distance)

q is the packing radius - the radius of the largest ball that can be
placed around every design point such that no two balls overlap

Goal: Find D that maximizes 2q: maxD minx∈D,x′∈D ρ(x, x′)

Ensures that the design points in D are as far apart from each
other as possible

© Optimization in Machine Learning – 4 / 11



SURROGATE MODELING

Running example = minimize this “black-box”:

© Optimization in Machine Learning – 5 / 11



SURROGATE MODELING

1 Fit a regression model f̂ : D[t] → R (blue) to extract maximum
information from the design points (black) and learn properties of f

As we can eval f without noise, we fit an interpolator

© Optimization in Machine Learning – 6 / 11



SURROGATE MODELING / 2

2 Instead of the expensive f , we optimize the cheap surrogate f̂
(blue) to propose a new point (red) for evaluation

© Optimization in Machine Learning – 7 / 11



SURROGATE MODELING / 3

3 We finally evaluate the newly proposed point

© Optimization in Machine Learning – 8 / 11



SURROGATE MODELING

After evaluation of the new point, we adjust the model on the
expanded dataset via (slower) refitting or a (cheaper) online
update

© Optimization in Machine Learning – 9 / 11



SURROGATE MODELING

We again obtain a new candidate point (red) by optimizing the
cheap surrogate model function (blue) ...

© Optimization in Machine Learning – 9 / 11



SURROGATE MODELING

... and evaluate that candidate

© Optimization in Machine Learning – 9 / 11



SURROGATE MODELING

We repeat: (i) fit the model

© Optimization in Machine Learning – 9 / 11



SURROGATE MODELING

(ii) propose a new point

© Optimization in Machine Learning – 9 / 11



SURROGATE MODELING

(iii) evaluate that point

We observe that the algorithm converged

© Optimization in Machine Learning – 9 / 11



BASIC LOOP

The basic loop of our sequential optimization procedure is:
1 Fit surrogate model f̂ on previous evaluations

D[t] = {(x[i], y [i])}i=1,...,t

2 Optimize the surrogate model f̂ to obtain a new point
x[t+1] := argminx∈S f̂ (x)

3 Evaluate x[t+1] and update data
D[t+1] = D[t] ∪ {(x[t+1], f (x[t+1]))}

© Optimization in Machine Learning – 10 / 11



EXPLORATION VS. EXPLOITATION

We see: We ran into a local minimum. We did not “explore” the most
crucial areas and missed the global minimum.

Better ways to propose points
based on our model exist,
so-called acquisition
functions

Optimizing SM directly
corresponds to raw / mean
prediction as AQF

Results in high exploitation
but low exploration

© Optimization in Machine Learning – 11 / 11


