Optimization in Machine Learning

Bayesian Optimization Basic BO Loop and Surrogate Modelling

× < 0 × × ×

Learning goals

- Initial design
- Surrogate modeling
- Basic loop

OPTIMIZATION VIA SURROGATE MODELING

Starting point:

- We do not know the objective function $f:\mathcal{S} \to \mathbb{R}$
- But we can evaluate f for a few different inputs $\mathbf{x} \in \mathcal{S}$
- For now we assume that those evaluations are noise-free
- Idea: Use the data $\mathcal{D}^{[t]} = \{(\mathbf{x}^{[i]}, y^{[i]})\}_{i=1,...t}, y^{[i]} := f(\mathbf{x}^{[i]}), \text{ to derive properties about the unknown function } f$

INITIAL DESIGN

- Should cover / explore input space sufficiently:
 - Random design
 - Latin hypercube sampling
 - Sobol sampling
- Type of design usually has not the largest effect
- A more important choice is the **size** of the initial design
 - Should neither be too small (bad initial fit) nor too large (spending too much budget without doing "intelligent" optimization)
 - Rule of thumb: 4d

LATIN HYPERCUBE SAMPLING

- LHS partitions the search space into bins of equal probability
- Goal is to attain a more even distribution of sample points than random sampling
- Allow at most one sample per bin; exactly one sample per row and column

Marginal histograms RS vs. LHS

LATIN HYPERCUBE SAMPLING

Actual sampling of points, e.g., constructed via Maximin:

- The minimum distance between any two points in \mathcal{D} is $2q = \min_{\mathbf{x} \in \mathcal{D}, \mathbf{x}' \in \mathcal{D}} \rho(\mathbf{x}, \mathbf{x}')$ (ρ any metric, e.g., Euclidean distance)
- *q* is the packing radius the radius of the largest ball that can be placed around every design point such that no two balls overlap
- Goal: Find \mathcal{D} that maximizes 2q: max $_{\mathcal{D}} \min_{\mathbf{x} \in \mathcal{D}, \mathbf{x}' \in \mathcal{D}} \rho(\mathbf{x}, \mathbf{x}')$
- $\bullet\,$ Ensures that the design points in ${\cal D}$ are as far apart from each other as possible

0	0	X
×	J	0
	X	X

Running example = minimize this "black-box":

• Fit a regression model $\hat{f} : \mathcal{D}^{[t]} \to \mathbb{R}$ (blue) to extract maximum information from the design points (black) and learn properties of *f*

As we can eval f without noise, we fit an interpolator

Instead of the expensive *f*, we optimize the cheap surrogate \hat{f} (blue) to **propose** a new point (red) for evaluation

We finally evaluate the newly proposed point

 After evaluation of the new point, we adjust the model on the expanded dataset via (slower) refitting or a (cheaper) online update

• We again obtain a new candidate point (red) by optimizing the cheap surrogate model function (blue) ...

• ... and evaluate that candidate

• We repeat: (i) fit the model

• (ii) **propose** a new point

• (iii) evaluate that point

• We observe that the algorithm converged

BASIC LOOP

The basic loop of our sequential optimization procedure is:

- Fit surrogate model \hat{f} on previous evaluations $\mathcal{D}^{[t]} = \{(\mathbf{x}^{[i]}, \mathbf{y}^{[i]})\}_{i=1,...,t}$
- Optimize the surrogate model *f* to obtain a new point x^[t+1] := arg min_{x∈S} *f*(x)
- Solution Evaluate $\mathbf{x}^{[t+1]}$ and update data $\mathcal{D}^{[t+1]} = \mathcal{D}^{[t]} \cup \{(\mathbf{x}^{[t+1]}, f(\mathbf{x}^{[t+1]}))\}$

EXPLORATION VS. EXPLOITATION

We see: We ran into a local minimum. We did not "explore" the most crucial areas and **missed** the global minimum.

- Better ways to propose points based on our model exist, so-called acquisition functions
- Optimizing SM directly corresponds to raw / mean prediction as AQF
- Results in high exploitation but low exploration

× < 0 × × ×