Optimization in Machine Learning

Bayesian Optimization Basic BO Loop and Surrogate Modelling

X X X

Learning goals

- Initial design
- Surrogate modeling
- **•** Basic loop

OPTIMIZATION VIA SURROGATE MODELING

Starting point:

- We do not know the objective function $f : \mathcal{S} \to \mathbb{R}$
- But we can evaluate *f* for a few different inputs $\mathbf{x} \in \mathcal{S}$
- For now we assume that those evaluations are noise-free
- **Idea:** Use the data $\mathcal{D}^{[t]} = \{(\mathbf{x}^{[i]}, y^{[i]})\}_{i=1,...t}, y^{[i]} := f(\mathbf{x}^{[i]}),$ to derive properties about the unknown function *f*

 $\mathbf{\times}$

INITIAL DESIGN

- Should cover / explore input space sufficiently:
	- Random design
	- Latin hypercube sampling
	- Sobol sampling
- Type of design usually has not the largest effect
- A more important choice is the **size** of the initial design
	- Should neither be too small (bad initial fit) nor too large (spending too much budget without doing "intelligent" optimization)
	- Rule of thumb: 4*d*

X

LATIN HYPERCUBE SAMPLING

- LHS partitions the search space into bins of equal probability
- Goal is to attain a more even distribution of sample points than random sampling
- Allow at most one sample per bin; exactly one sample per row and column

Marginal histograms RS vs. LHS

LATIN HYPERCUBE SAMPLING

Actual sampling of points, e.g., constructed via **Maximin**:

- The minimum distance between any two points in $\mathcal D$ is
	- 2*q* = min**x**∈D,**^x** ′∈D ρ(**x**, **x** ′) (ρ any metric, e.g., Euclidean distance)
- *q* is the packing radius the radius of the largest ball that can be placed around every design point such that no two balls overlap
- Goal: Find $\mathcal D$ that maximizes 2 q : max $_{\mathcal D}$ min $_{\mathbf x\in\mathcal D,\mathbf x'\in\mathcal D}$ $\rho(\mathbf x,\mathbf x')$
- **•** Ensures that the design points in D are as far apart from each other as possible

Running example = minimize this "black-box":

1 Fit a **regression model** $\hat{f}: \mathcal{D}^{[t]} \to \mathbb{R}$ (blue) to extract maximum information from the design points (black) and learn properties of *f*

 $\overline{}$

As we can eval *f* without noise, we fit an interpolator

2 Instead of the expensive *f*, we optimize the cheap surrogate \hat{f} (blue) to **propose** a new point (red) for evaluation

³ We finally evaluate the newly proposed point

X $\times\overline{\times}$

After evaluation of the new point, we **adjust** the model on the expanded dataset via (slower) refitting or a (cheaper) online update

X \times \times

We again obtain a new candidate point (red) by optimizing the cheap surrogate model function (blue) ...

X \times \times

... and evaluate that candidate

X **XX**

We repeat: (i) **fit** the model

X **XX**

(ii) **propose** a new point

X $\times\overline{\times}$

(iii) **evaluate** that point

X X X

We observe that the algorithm converged

BASIC LOOP

The basic loop of our sequential optimization procedure is:

- **1** Fit surrogate model \hat{f} on previous evaluations $\mathcal{D}^{[t]} = \{(\mathbf{x}^{[i]}, y^{[i]})\}_{i=1,...,t}$
- **2** Optimize the surrogate model \hat{f} to obtain a new point $\mathbf{x}^{[t+1]} \coloneqq \argmin_{\mathbf{x} \in \mathcal{S}} \hat{f}(\mathbf{x})$
- **³** Evaluate **x** [*t*+1] and update data $\mathcal{D}^{[t+1]} = \mathcal{D}^{[t]} \cup \{(\mathbf{x}^{[t+1]}, f(\mathbf{x}^{[t+1]}))\}$

EXPLORATION VS. EXPLOITATION

We see: We ran into a local minimum. We did not "explore" the most crucial areas and **missed** the global minimum.

- Better ways to propose points based on our model exist, so-called **acquisition functions**
- Optimizing SM directly corresponds to raw / mean prediction as AQF
- Results in **high exploitation but low exploration**

< ×