Optimization in Machine Learning

Bayesian Optimization Black Box Optimization

× 0 0 × × ×

Learning goals

- Definition and properties
- Examples
- Naive approaches

STANDARD VS. BLACK-BOX OPTIMIZATION

Optimization: Find

$$\min_{\mathbf{x}\in\mathcal{S}}f(\mathbf{x})$$

with objective function

$$f: \mathcal{S} \to \mathbb{R},$$

where $\ensuremath{\mathcal{S}}$ is usually box constrained.

If we are lucky ...

- ... we have an analytic description of $f: S \to \mathbb{R}$
- ... we can calculate gradients and use gradient-based methods (e.g. gradient descent) for optimization

× × 0 × × ×

STANDARD VS. BLACK-BOX OPTIMIZATION / 2

Optimization: Find

$$\min_{\mathbf{x}\in\mathcal{S}}f(\mathbf{x})$$

with objective function

$$f: \mathcal{S} \to \mathbb{R}$$

where \mathcal{S} is usually box constrained.

Optimization gets harder ...

- ... if we cannot calculate gradients (because *f* is not differentiable or *f* is not known to us)
- ... but as long as evaluations of *f* are cheap, we can use standard derivative-free optimization methods (e.g. Nelder-Mead, simulated annealing, EAs)

0 0 X X 0 X X

STANDARD VS. BLACK-BOX OPTIMIZATION / 3

Optimization: Find

$$\min_{\mathbf{x}\in\mathcal{S}}f(\mathbf{x})$$

with objective function

$$f: \mathcal{S} \to \mathbb{R},$$

where $\ensuremath{\mathcal{S}}$ is usually box constrained.

Optimization gets really hard if ...

- ... there is no analytic description of
 - $f: \mathcal{S} \to \mathbb{R}$ (black box)
- ... evaluations of *f* for given values of x are time consuming

0 0 X X 0 X X

EXAMPLES FOR BAYESIAN OPTIMIZATION

Robot Gait Optimization: The robot's gait is controlled by a parameterized controller

× × 0 × ×

- **Goal:** Find parameters s.t. average velocity (directional speed) of the robot is maximized
- Parameters of the gait control e.g. joints of ankles and knees
- Calandra et al. (2014). An Experimental Evaluation of Bayesian Optimization on Bipedal Locomotion

EXAMPLES FOR BAYESIAN OPTIMIZATION / 2

Optimization of a cookie recipe

https://www.bettycrocker.com

Ingredient	Salt	Total	Brown	Vanilla	Chip	Chip
-	(tsp)†	Sugar (g)	Sugar (%)	(tsp)†	Quantity (g)	Type
Min	0	150	0	0.25	114	{Dark, Milk,
Max	0.5	500	1	1	228	White}

- Goal: Find "optimal" composition and amounts of ingredients
- **Evaluation:** Cookies are baked according to the recipe, tested and rated by volunteers
- Kochanski et al. (2017). Bayesian Optimization for a Better Dessert

NAIVE APPROACHES

- Empirical knowledge / manual tuning
 - Select parameters based on "expert" knowledge
 - Advantages: Can lead to fairly good outcomes for known problems
 - **Disadvantages:** Very (!) inefficient, poor reproducibility, chosen solution can also be far away from a global optimum

× 0 0 × 0 × ×

NAIVE APPROACHES / 2

- Grid search / random search
 - Grid search: Exhaustive search of a predefined grid of inputs
 - Random search: Evaluate uniformly sampled inputs
 - Advantages: Easy, intuitive, parallelization is trivial
 - Disadvantages: Inefficient, search large irrelevant areas

Rug plots of RS vs. GS.

× × 0 × × ×

NAIVE APPROACHES / 3

- Traditional black-box optimization
 - Traditional approaches that do not require derivatives
 - E.g. Nelder-Mead, simulated annealing, EAs
 - Advantages: Truly iterative, focuses on relevant regions
 - **Disadvantages:** Still inefficient; usually lots of evaluations are needed to produce good outcomes

× 0 0 × × ×

NAIVE APPROACHES / 4

× 0 0 × 0 × ×

BO vs. CMAES vs. RS on 2D Ackley.