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CMA-ES: WRAP UP

Algorithm CMA-ES
1: Input: m ∈ Rd , σ ∈ R+, λ (problem-dependent)
2: Initialize: C = I, pc = 0, pσ = 0
3: Set: cC ≈ 4/d , cσ ≈ 4/d , c1 ≈ 2/d2, cµ ≈ µw/d2, c1 +cµ ≤ 1, dσ ≈ 1+

√
µw/d

and wi=1,...,µ such that µw = 1∑µ
i=1 w2

i
≈ 0.3λ

4: while not terminate do
5: x(i) = m + σN (0,C) for i = 1, . . . , λ Sampling
6: yw =

∑µ
i=1 wi y i:λ, where y i:λ = (xi:λ −m)/σ Selection/Recombination

7: m← m + σyw Update m
8: pC ← (1− cC)pC +

√
cC(2− cC)µw yw Cumulation of C

9: pσ ← (1− cσ)pσ +
√

cσ(2− cσ)µw C− 1
2 yw Cumulation of σ

10: C ← (1− c1 − cµ
∑

wj)C + c1pCp⊤
C + cµ

∑µ
i=1 wi y i:λy⊤

i:λ Update C

11: σ ← σ × exp

(
cσ
dσ

(
||pσ||

E||N (0,I)|| − 1
))

Update σ

12: end while
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CMA-ES: WRAP UP - DEFAULT VALUES
Related to selection and recombination:

λ: offspring number, population size 4 + ⌊3 ln d⌋
µ: parent number, solutions involved in mean update ⌊λ/2⌋
w i : recombination weights (preliminary convex shape) ln λ+1

2 − ln i, for i = 1, . . . , λ

Related to C-update:

1 − cC : decay rate for evolution path, cumulation factor 1 − 4+µw/d
d+4+2µw/d

c1: learning rate for rank-one update of C 2
(d+1.3)2+µw

cµ: learning rate for rank-µ update of C min
(

1 − c1, 2 · µw−2+1/µw
(d+2)2+µw

)
Related to σ-update:

1 − cσ : decay rate for evolution path 1 − µw+2
d+µw+5

dσ : damping for σ-change 1 + 2max
(

0,
√

µw−1
d+1 − 1

)
+cσ

with µw =
( ||w||1
||w||2

)
=

(
∑µ

i=1 |wi |)2∑µ
i=1 w2

i
= 1∑µ

i=1 w2
i

and typical default parameter values.

µw can be extended to λ instead of µ weights, allowing negative weights for the remaining
λ− µ points (“active covariance adaption”).
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CMA-ES: WRAP UP - ADVANTAGES

CMA-ES can outperform other strategies in following cases:

Non-separable problems (parameters of the objective function are
dependent)

Derivative of the objective function is not available

High-dimensional problems (large d)

Very large search space

Useful in case “classical” search methods like quasi-Newton
methods (BFGS) or conjugate gradient methods fail due to a
non-convex or rugged search landscape (e.g. outliers, noise, local
optima, sharp bends).
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CMA-ES: WRAP UP - LIMITATIONS

CMA-ES can be outperformed by other strategies in following cases:

Partly separable problems (i.e. optimization of n-dimensional
objective function can be divided into a series of d optimizations of
every single parameter)

Derivative of the objective function is easily available → Gradient
Descend / Ascend

Low dimensional problems (small d)

Problems that can be solved by using a relative small number of
function evaluations (e.g. < 10d evaluations)
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CMA-ES: IPOP

Many special forms and extensions of the “basic” CMA-ES exist

CMA-ES efficiently minimizes unimodal objective functions and is in particular
superior on ill-conditioned, non-separable problems

Default population size λdefault has been tuned for unimodal functions and
however can get stuck in local optima on multi-modal functions, such that
convergence to global optima is not guaranteed

It could be shown that increasing the population size improves the performance
of the CMA-ES on multi-modal functions

IPOP-CMA-ES is a special form of restart-CMA-ES, where the population size is
increased for each restart (IPOP)

By increasing the population size the search characteristic becomes more global
after each restart

For the restart strategy CMA-ES is stopped whenever some stopping criterion is
met, and an independent restart is launched with the population size increased
by a factor of 2 (values between 1.5 and 5 are reasonable).
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CMA-ES: WRAP UP - BENCHMARK EAS
Example: Black-box optimization of 25 benchmark functions under thoroughly defined
experimental and recording conditions for the 2005 IEEE Congress on Evolutionary
Computation: Session on Real-Parameter Optimization.
17 papers were submitted, 11 were accepted, thereunder hybrid methods.

Two of the Algorithms:

L-CMA-ES (Auger and Hansen. 2005a): A CMA evolution strategy with small
population size and small initial step-size to emphasize on local search
characteristics. Independent restarts are conducted until the target function value
is reached or the maximum number of function evaluations is exceeded.

G-CMA-ES (Auger and Hansen. 2005b): A CMA evolution strategy restarted with
increasing population size (IPOP). Independent restarts are conducted with
increasing population size until the target function value is reached or the
maximum number of function evaluations is exceeded. With the initial small
population size the algorithm converges fast, with the succeeding larger
population sizes the global search performance is emphasized in subsequent
restarts.
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CMA-ES: WRAP UP - BENCHMARK EAS / 2

Comparison of performance results from 11 algorithms for search space dimension 10 and
30 on different function subsets

Expected number of function evaluations (FEs) to reach the target function value is
normalized by the value of the best algorithm on the respective function FEsbest

Calculation of the empirical cumulative distribution function of FEs / FEsbest for each
algorithm over different sets of functions in 10 and 30D

Small values for FEs / FEsbest and therefore large values of the graphs are preferable.
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