Optimization in Machine Learning

Evolutionary Algorithms GA / Bit Strings

× 0 0 × × ×

Learning goals

- Recombination
- Mutation
- Simple examples

BINARY ENCODING

- In theory: Each problem can be encoded binary
- In practice: Binary not always best representation (e.g., if values are numeric, trees or programs)

We typically encode problems with **binary decision variables** in binary representation.

Examples:

- Scheduling problems
- Integer / binary linear programming
- Feature selection

• ...

× 0 0 × 0 × ×

RECOMBINATION FOR BIT STRINGS

Two individuals $\mathbf{x}, \tilde{\mathbf{x}} \in \{0, 1\}^d$ encoded as bit strings can be recombined as follows:

• **1-point crossover:** Select crossover $k \in \{1, ..., d - 1\}$ randomly. Take first *k* bits from parent 1 and last d - k bits from parent 2.

× × 0 × × ×

 Uniform crossover: Select bit *j* with probability *p* from parent 1 and 1 - *p* from parent 2.

$$\begin{array}{cccccc} 1 & 0 & & 1 \\ 0 & 0 & & 0 \\ 0 & 1 & \Rightarrow & 1 \\ 0 & 1 & & 1 \\ 1 & 0 & & 1 \end{array}$$

MUTATION FOR BIT STRINGS

Offspring $\boldsymbol{x} \in \{0,1\}^d$ encoded as a bit string can be mutated as follows:

• **Bitflip:** Each bit *j* is flipped with probability $p \in (0, 1)$.

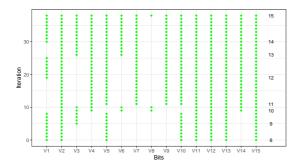
$$\begin{array}{cccc} 1 & & 0 \\ 0 & & 0 \\ 0 & \Rightarrow & 0 \\ 0 & & 1 \\ 1 & & 1 \end{array}$$

EXAMPLE 1: ONE-MAX EXAMPLE

 $\mathbf{x} \in \{0, 1\}^d, d = 15$ bit vector representation.

Goal: Find the vector with the maximum number of 1's.

- Fitness: $f(\mathbf{x}) = \sum_{i=1}^{d} x_i$
- $\mu = 15, \lambda = 5, (\mu + \lambda)$ -strategy, bitflip mutation, no recombination



Green: Representation of best individual per iteration. Right scale shows fitness.

Optimization in Machine Learning - 4 / 8

× 0 0 × 0 × ×

EXAMPLE 2: FEATURE SELECTION

We consider the following toy setting:

- Generate design matrix X ∈ ℝ^{n×p} by drawing n = 1000 samples of p = 50 independent normally distributed features with μ_j = 0 and σ_i² > 0 varying between 1 and 5 for j = 1,..., p.
- Linear regression problem with dependent variable y:

 $\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}$

with $\epsilon \sim \mathcal{N}(0, 1)$.

Parameter θ :

 \Rightarrow Only 8 out of 50 equally influential features

× 0 0 × × ×

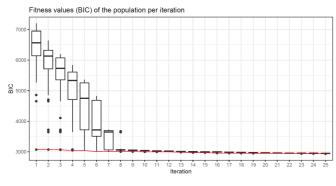
EXAMPLE 2: FEATURE SELECTION / 2

- Aim: Find influential features
- Encoding: $z \in \{0, 1\}^p$, $z_j = 1$ means θ_j included in model
- Fitness function f(z): BIC of the model belonging to z
- Mutation: Bit flip with p = 0.3
- **Recombination:** Uniform crossover with p = 0.5
- Survival selection: $(\mu + \lambda)$ strategy with $\mu = 100$ and $\lambda = 50$

```
## [1] "After 10 iterations:"
## [1] 1 7 11 13 14 15 19 20 22 25 30 31 36 37 40 43 44 48
## [19] 49 50
## [1] "After 20 iterations:"
## [1] 1 7 8 13 15 19 20 25 31 37 43
## [1] "Included variables after 24 iterations:"
## [1] 1 7 13 19 25 31 37 43
```

× 0 0 × 0 × × ×

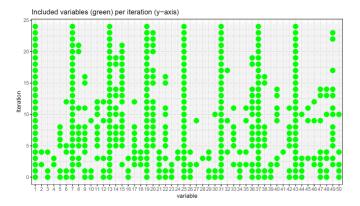
EXAMPLE 2: FEATURE SELECTION / 3



× 0 0 × 0 × ×

Best individual

EXAMPLE 2: FEATURE SELECTION / 4



× 0 0 × × ×