
Optimization in Machine Learning

Evolutionary Algorithms
Introduction

INITIALIZATION

λ1 λ2 λ3 λ4

λ(1)

λ(2)

λ(pop)

c = 0.2

c = 0.8

...
c = 0.6

0

1

2

3

4

5

6

7891011

12
13

14

15

16

17

18

19

20

21
22

23

24 25 26 2
7

28

29

30
31

32

33

34

35

PARENT SELECTION

SELECTION TYPE

uniform
tournament
roulette

CROSSOVER

⊕

=

. . .

MUTATION

≈ . . .

SELECTION

✓

✗

✓

✗

λ1 λ2 λ3 λ4

λ(1)

λ(pop)

λ(pop+1)

λ(pop+off)

c = 0.2

...
c = 0.8

c = 0.3

...
c = 0.7

✓1,
. . .

,✓po
p

STOP?

EVALUATION

λ(pop+1)

λ(pop+off)

c = 0.3

...
c = 0.7

Learning goals
Evolutionary algorithms

Encoding

Parent selection, variation, survival
selection

EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EA) are a class of stochastic, metaheuristic
optimization techniques whose mode of operation is inspired by the
evolution of natural organisms.

History of evolutionary algorithms:

Genetic algorithms: Use binary problem representation, therefore closest to the
biological model of evolution.

Evolution strategies: Use direct problem representation, e.g., vector of real
numbers.

Genetic programming: Create structures that convert an input into a fixed
output (e.g. computer programs); solution candidates are represented as trees.

Evolutionary programming: Similar to genetic programming, but solution
candidates are not represented by trees, but by finite state machines.

The boundaries between the terms become increasingly blurred and are often used

synonymously.

© Optimization in Machine Learning – 1 / 10

STRUCTURE OF AN EVOLUTIONARY ALGORITHM

INITIALIZATION

λ1 λ2 λ3 λ4

λ(1)

λ(2)

λ(pop)

c = 0.2

c = 0.8

...
c = 0.6

0

1

2

3

4

5

6

7891011

12
13

14

15

16

17

18

19

20

21
22

23

24 25 26 27

28

29

30
31

32

33

34

35

PARENT SELECTION

SELECTION TYPE

uniform
tournament
roulette

CROSSOVER

⊕

=

. . .

MUTATION

≈ . . .

SELECTION

✓

✗

✓

✗

λ1 λ2 λ3 λ4

λ(1)

λ(pop)

λ(pop+1)

λ(pop+off)

c = 0.2

...
c = 0.8

c = 0.3

...
c = 0.7

✓1,
. . .

,✓po
p

STOP?

EVALUATION

λ(pop+1)

λ(pop+off)

c = 0.3

...
c = 0.7

© Optimization in Machine Learning – 2 / 10

NOTATION AND TERMINOLOGY

A chromosome is a set of parameters which encodes a proposed solution to the
problem that the genetic algorithm is trying to solve. The chromosome is often
represented as a binary string, although a wide variety of other data structures
are also used.

The set of all solutions is known as the population.

Symbols EA Terminology

solution candidate x ∈ S chromosome of an individual

xj j-th gene of chromosome

set of candidates P with µ = |P| population and size

λ number of generated offsprings

f : S → R fitness function

Note: Unintuitively, we are minimizing fitness because we always
minimize f by convention.

© Optimization in Machine Learning – 3 / 10

ENCODING

Encoding of chromosomes is the first step of solving a problem with
EAs. Technically: Mapping from genotype to phenotype. Encoding
depends on the problem, and eventually decides performance of
problem solving.

Encoding methods:

Binary encoding: Strings of 0s and 1s

Real value encoding: Real values

© Optimization in Machine Learning – 4 / 10

ENCODING / 2

Tree encoding: Tree objects

Floor planning problem. Given are n circuits of different area requirements. Goal:
arrange them into a floor layout so that all circuits are placed in a minimum

layout. Each solution candidate can be represented by a tree.
Source: Encoding Techniques in Genetic Algorithms, Debasis Samanta, 2018.

© Optimization in Machine Learning – 5 / 10

STEP 1: INITIALIZE POPULATION

Evolutionary algorithms start with generating initial population
P = {x(1), ..., x(µ)}.

Usually: Initialize uniformly at random.

Introducing prior knowledge possible.

Population is evaluated: objective function is computed for each
initial individual.

Initialization influences quality of solution, so many EAs employ
restarts with new randomly generated initial populations.

© Optimization in Machine Learning – 6 / 10

STEP 2: PARENT SELECTION
Choose a number of λ parents pairs creating λ offsprings.

Neutral selection: Draw parents uniformly at random.

Fitness-proportional / Roulette wheel selection: Draw individuals with
probability proportional to their fitness.

Tournament selection: Randomly select k individuals for a "tournament group"
and pick the best one (according to fitness value).

7.586.51
6.09

5.68

4.49

4.37

3.74

2.61
2.52

0.98

2

4

6

fitness

Left: Fitness-proportional selection. Fitness values of µ = 10 individuals are
converted into probabilities. Right: Tournament selection.

© Optimization in Machine Learning – 7 / 10

STEP 3: VARIATION

New individuals (offsprings) are generated from parents.

Recombination/Crossover: Combine two parents into offspring.

Mutation: Modify the offspring locally.

Sometimes only one of both operations is performed.

Note: Particular operation depends on encoding. Examples for binary
and numeric encodings follow later.

© Optimization in Machine Learning – 8 / 10

STEP 4: SURVIVAL SELECTION

Choosing surviving individuals. Two common strategies are:

(µ, λ)-selection: Select µ best individuals only from set of
offsprings (λ ≥ µ necessary).
But: Best individual can get lost!

(µ+ λ)-selection: Select µ best individuals from set of µ parents
and λ offsprings
Now: Best individual certainly survives.

© Optimization in Machine Learning – 9 / 10

EVOLUTIONARY ALGORITHMS

Advantages

Simple but enough to solve complex problems

All parameter types possible in general

Highly parallelizable

Flexible through different variation operations

Disadvantages

Little mathematical rigor (for realistic, complex EAs)

Hard to find balance between exploration and exploitation

Quite some parameters, hard to determine them

Customization necessary for complex problems

Not suitable for expensive problems like HPO as large number of
function evaluations necessary

© Optimization in Machine Learning – 10 / 10

