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INTRODUCTION

Heuristics for the optimization of complex (multivariate, non-linear,
non-convex) objective functions

Procedure for finding good solutions to complex problems.

Does not guarantee optimal/best result (global optimum), but
usually good solutions.

Goal for complex optimization problems: avoid “getting stuck” in
local optima.

Is often used for difficult discrete problems as well.

Local search strategy with random option to accept worse values.
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SIMPLE STOCHASTIC LOCAL SEARCH
Given is a multivariate objective function f (x)

Define a local neighborhood area V (x) for a given x

Sample proposal x[t+1] uniformly at random from neighborhood V (x[t])

Calculate f (x[t+1])

If ∆f = f (x[t+1])− f (x[t]) < 0, x[t+1] is accepted as new solution,
otherwise a new proposal from neighborhood is sampled.

Simple stochastic local search: Acceptance (green) and rejection range (red)
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METROPOLIS ALGORITHM

Simple stochastic local search strongly depends on x[0] and the
neighborhood.
⇒ Danger of ending up in local minima

Idea: allow worse candidates with some probability

Metropolis: accept candidates from previous rejection range
(∆f > 0) with probability P(accept |∆f ) = exp(−∆f/T )

T denotes “temperature”

Simulated annealing: Colors correspond to P(accept)
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METROPOLIS ALGORITHM / 2

Parameter T describes temperature/progress of the system

High temperatures correspond to high probability of accepting worse x

Local minima can be escaped, but no convergence can be achieved at
constant temperature

We come across an important principle of optimization:

exploration (high T) vs. exploitation (low T)
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SIMULATED ANNEALING

Start with high temperature to explore whole space

Slowly reduce temperature to converge
⇒ Sequence of descending temperatures T [t], t ∈ N
Procedure is called simulated annealing

Temperature is often kept constant several iterations in a row to
explore the space, then multiplied by coefficient 0 < c < 1:

T [t+1] = c · T [t]

Other strategies possible, for example:

T [t] = T [0]
(

1 − t
tmax

)
Choosing neighborhood:

Many different strategies. Strongly depends on objective function.
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ANALOGY TO METALLURGY

Simulated annealing draws analogy between a cooling process
(e.g. a metal or liquid) and an optimization problem.

If cooling of a liquid material (amount of atoms) is too fast, it
solidifies in suboptimal configuration, slow cooling produces
crystals with optimal structure (minimum energy stage).

Consider atoms of the liquid as a system with many degrees of
freedom, analogy to optimization problem of a multivariate function

Minimum energy stage corresponds to optimum of objective
function.
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