
Optimization in Machine Learning

Nelder-Mead method

Learning goals
General idea

Reflection, expansion, contraction

Advantages & disadvantages

Examples



NELDER-MEAD METHOD

Derivative-free method ⇒ heuristic

Generalization of bisection in d-dimensional space

Based on d-simplex, defined by d + 1 points:
d = 1 interval
d = 2 triangle
d = 3 tetrahedron
· · ·

© Optimization in Machine Learning – 1 / 10



NELDER-MEAD METHOD / 2

A version of the Nelder-Mead method:

Initialization: Choose d + 1 random, affinely independent points vi (vi

are vertices: corner points of the simplex/polytope).

1 Order: Order points according to ascending function values

f (v1) ≤ f (v2) ≤ . . . ≤ f (vd) ≤ f (vd+1).

with v1 best point, vd+1 worst point.

© Optimization in Machine Learning – 2 / 10



NELDER-MEAD METHOD / 3

2 Compute centroid without worst point

v̄ =
1
d

d∑
i=1

vi .

© Optimization in Machine Learning – 3 / 10



NELDER-MEAD METHOD / 4

3 Reflection: Compute reflection point

vr = v̄ + ρ(v̄ − vd+1),

with ρ > 0. Compute f (vr ).

Note: Default value for reflection coefficient: ρ = 1

© Optimization in Machine Learning – 4 / 10



NELDER-MEAD METHOD / 5

Distinguish three cases:
Case 1: f (v1) ≤ f (vr ) < f (vd)

⇒ Accept vr and discard vd+1

Case 2: f (vr ) < f (v1)

⇒ Expansion:

ve = v̄ + χ(vr − v̄), χ > 1.

We discard vd+1 and except the better
of vr and ve.

Note: Default value for expansion coefficient: χ = 2

© Optimization in Machine Learning – 5 / 10



NELDER-MEAD METHOD / 6

Case 3: f (vr ) ≥ f (vd)

⇒ Contraction:
vc = v̄ + γ(vd+1 − v̄)

with 0 < γ ≤ 1/2.

If f (vc) < f (vd+1), accept vc .
Otherwise, shrink entire simplex (Shrinking):

vi = v1 + σ(vi − v1) ∀i

Note: Default values for contraction and shrinking coefficient:
γ = σ = 1/2

4 Repeat all steps until stopping criterion met.

© Optimization in Machine Learning – 6 / 10



NELDER-MEAD
Advantages:

No gradients needed

Robust, often works well for non-differentiable functions.

Drawbacks:

Relatively slow (not applicable in high dimensions)

Not each step improves solution, only mean of corner values is reduced.

No guarantee for convergence to local optimum / stationary point.

Visualization:

http://www.benfrederickson.com/numerical-optimization/

Note: Nelder-Mead is default method of R function optim(). If gradient is
available and cheap, L-BFGS is preferred.

© Optimization in Machine Learning – 7 / 10

http://www.benfrederickson.com/numerical-optimization/


NELDER-MEAD VISUALIZATION IN 2D

min
x

f (x1, x2) = x2
1 + x2

2 + x1 · sin x2 + x2 · sin x1

© Optimization in Machine Learning – 8 / 10



NELDER-MEAD VISUALIZATION IN 2D

min
x

f (x1, x2) = x2
1 + x2

2 + x1 · sin x2 + x2 · sin x1

© Optimization in Machine Learning – 8 / 10



NELDER-MEAD VISUALIZATION IN 2D

min
x

f (x1, x2) = x2
1 + x2

2 + x1 · sin x2 + x2 · sin x1

© Optimization in Machine Learning – 8 / 10



NELDER-MEAD VISUALIZATION IN 2D

min
x

f (x1, x2) = x2
1 + x2

2 + x1 · sin x2 + x2 · sin x1

© Optimization in Machine Learning – 8 / 10



NELDER-MEAD VS. GD

Nelder-Mead in multiple dimensions: Organize points (US cities) to keep predefined

mutual distances. For 10 cities, gradient descent (top) converges well for a suitable

learning rate. Nelder-Mead (bottom) fails to converge, even after many iterations.

© Optimization in Machine Learning – 9 / 10



NELDER-MEAD VS. GD / 2

Even for only 5 cities, Nelder-Mead (bottom) performs poorly. However, gradient

descent (top) still works.

© Optimization in Machine Learning – 10 / 10


