
Optimization in Machine Learning

Coordinate descent

Learning goals
Axes as descent direction

CD on linear model and LASSO

Soft thresholding



COORDINATE DESCENT

Assumption: Objective function not differentiable
Idea: Instead of gradient, use coordinate directions for descent

First: Select starting point x [0] = (x [0]
1 , . . . , x [0]

d )

Step t : Minimize f along xi for each dimension i for fixed
x [t]

1 , . . . , x [t]
i−1 and x [t−1]

i+1 , . . . , x [t−1]
d :

Source: Wikipedia (Coordinate descent)
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COORDINATE DESCENT / 2

Minimum is determined with (exact / inexact) line search

Order of dimensions can be any permutation of {1, 2, . . . , d}
Convergence:

f convex differentiable
f sum of convex differentiable and convex separable function:

f (x) = g(x) +
d∑

i=1

hi(xi),

where g convex differentiable and hi convex
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COORDINATE DESCENT / 3

Not convergence in general for convex functions.

Counterexample:

Source: Wikipedia (Coordinate descent)
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EXAMPLE: LINEAR REGRESSION

Minimize LM with L2-loss via CD:

min g(θ) = min
θ

1
2

n∑
i=1

(
y (i) − θ⊤x(i)

)2
= min

θ

1
2
∥y − Xθ∥2

where y ∈ Rn, X ∈ Rn×d with columns x1, . . . , xd ∈ Rn.

Assume: Scaled data, i.e., X⊤X = Id (just to get intuition)

Then:

g(θ) =
1
2

y⊤y +
1
2
θ⊤θ − y⊤Xθ

(∗)
=

1
2

y⊤y +
1
2
θ⊤θ − y⊤

p∑
k=1

xkθk

(∗) Xθ = x1θ1 + x2θ2 + · · ·+ xdθd =
∑d

k=1 xkθk
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EXAMPLE: LINEAR REGRESSION / 2

Exact CD update in direction j :

∂g(θ)
∂θj

= θj − y⊤xj

By solving ∂g(θ)
∂θj

= 0, we get

θ∗j = y⊤xj

Repeat this update for all θj
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SOFT THRESHOLDING

Minimize LM with L2-loss and L1 regularization via CD:

min
θ

h(θ) = min
θ

1
2
∥y − Xθ∥2 + λ∥θ∥1

Note that h(θ) = 1
2y⊤y + 1

2θ
⊤θ −

∑d
k=1(y

⊤xkθk + λ|θk |)

Assume (again): X⊤X = Id .
Since | · | is not differentiable, distinguish three cases:

Case 1: θj > 0. Then |θj | = θj and

0 =
∂h(θ)
∂θj

= θj − y⊤xj + λ ⇔ θ∗j,LASSO = θ∗j − λ

Case 2: θj < 0. Then |θj | = −θj and

0 =
∂h(θ)
∂θj

= θj − y⊤xj − λ ⇔ θ∗j,LASSO = θ∗j + λ

Case 3: θj = 0
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SOFT THRESHOLDING / 2

We can write the solution as:

θ∗j,LASSO =


θ∗j − λ if θ∗j > λ

θ∗j + λ if θ∗j < −λ

0 if θ∗j ∈ [−λ, λ],

This operation is called soft thresholding.

Coefficients for which the solution to the unregularized problem are
smaller than a threshold, |θ∗

j | < λ, are shrinked to zero.

Note: Derivation of soft thresholding operator not trivial (subgradients)
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CD FOR STATISTICS AND ML

Why is it being used?

Easy to implement

Scalable: no storage/operations on large objects, just current point
⇒ Good implementation can achieve state-of-the-art performance

Applicable for non-differentiable (but convex separable) objectives

Examples:

Lasso regression, Lasso GLM, graphical Lasso

Support Vector Machines

Regression with non-convex penalties
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