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SEQUENTIAL QUADRATIC PROGRAMMING

For simplification, we consider only equality constraints, thus problems
of the form

min f (x) s.t. h(x) = 0.

Idea:

Instead of f we optimize the 2nd order Taylor approximation in a
point x̃

f̃ (x) = f (x̃) +∇x f (x̃)T (x − x̃) +
1
2
(x − x̃)T∇2

xx f (x̃)(x − x̃)

h is also replaced by its linear approximation in x̃ .

h̃(x) = h(x̃) +∇h(x̃)T (x − x̃).
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SEQUENTIAL QUADRATIC PROGRAMMING / 2

With d := (x − x̃) we formulate the quadratic auxiliary problem

min
d

f̃ (d) := f (x̃) + dT∇x f (x̃) +
1
2

dT∇2
xx f (x̃)d

s.t. h̃(d) := h(x̃) +∇h(x̃)T d = 0.

Even if no conditions for optimality can be formulated for the actual
optimization problem, the KKT conditions apply in an optimum of this
problem necessarily.

If the matrix ∇2
xx f (x) is positive semidefinite, it is a convex

optimization problem.
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SEQUENTIAL QUADRATIC PROGRAMMING / 3

Using the Lagrange function

L(d ,β) = dT∇x f (x̃) +
1
2

dT∇2
xx f (x̃)d + βT (h(x̃) +∇h(x̃)T d)

we formulate the KKT conditions

∇dL(d ,β) = ∇x f (x̃) +∇2
xx f (x̃)d +∇h(x̃)Tβ = 0

h(x̃) +∇h(x̃)T d = 0

or in matrix notation(
∇2

xx f (x̃) ∇h(x̃)T

∇h(x̃) 0

)(
d
β

)
= −

(
∇x f (x̃)

h(x̃)

)
The solution of the quadratic subproblem can thus be traced back to
the solution of a linear system of equations.
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SEQUENTIAL QUADRATIC PROGRAMMING / 4

Algorithm SQP for problems with equality constraints

1: Select a feasible starting point x(0) ∈ Rn

2: while Stop criterion not fulfilled do
3: Solve quadratic subproblem by solving the equation(

∇2
xxL(x,µ) ∇h(x)T

∇h(x) 0

)(
d
β

)
= −

(
∇xL(x,µ)

h(x)

)
4: Set x(i+1) = x(i) + d
5: end while
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PENALTY METHODS

Idea: Replace the constrained Optimization problem with a sequence
of unconstrained optimization problems using a penalty function.

Instead of looking at

min f (x) s.t. h(x) = 0.

we look at the unconstrained optimization problem

min
x

p(x) = f (x) + ρ
∥h(x)∥2

2
.

Under appropriate conditions it can be shown that the solutions of the
problem for ρ → ∞ converge against the solution of the initial problem.
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BARRIER METHOD

Idea: Establish a “barrier” that penalizes if x comes too close to the
edge of the allowed set S. For the problem

min f (x) s.t. g(x) ≤ 0

a common Barrier function is

Bρ = f (x)− ρ

m∑
i=1

ln(−gi(x))

The penalty term becomes larger, the closer x comes to 0, i.e. the limit
of the feasible set. Under certain conditions, the solutions of minBρ for
ρ → 0 converge against the optimum of the original problem.

The procedure is also called interior-point method.
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Constrained Optimization in R
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CONSTRAINED OPTIMIZATION IN R

The function optim(..., method = “L-BFGS-B”) uses
quasi-newton methods and can handle box constraints.

The function nlminb() uses trust-region procedures and can also
handle box constraints.

constrOptim() can be used for optimization problems with linear
inequality conditions and is based on interior-point methods.

nloptr is an interface to NLopt, an open-source library for
nonlinear optimization
(https://nlopt.readthedocs.io/en/latest/)
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