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STATIONARY POINT OF THE LAGRANGIAN

When we introduced the Lagrangian L from a geometrical perspective
for the equality constraint problem, we realized that the geometrical
conditions for the optimum coincided with finding a stationary point of L:(

∇xL(x∗, β)
∇βL(x∗, β)

)
=

(
∇f (x∗) + β∇h(x∗)

h(x)

)
=

(
0
0

)

For this and the general Lagrangian, this leads to the following
question.

Question: Is ∇L(x,α,β) = 0 a necessary / sufficient condition for
the optimum?

© Optimization in Machine Learning – 1 / 9



KKT CONDITIONS

In order to be able to formulate necessary and sufficient conditions for
optimality, we need the Karush-Kuhn-Tucker conditions (KKT
conditions).

A triple (x,α,β) satisfies the KKT conditions if

∇xL(x,α,β) = 0 (stationarity)

gi(x) ≤ 0, hj(x) = 0 for all i, j (primal feasibility)

α ≥ 0 (dual feasibility)

αigi(x) = 0 for all i (complementary slackness)
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KKT CONDITIONS / 2

Necessary condition for optimality:
Let x∗ be a local minimum. If certain regularity conditions are fulfilled,
there are α∗,β∗ such that (x∗,α∗,β∗) fulfill the KKT conditions.

Under certain conditions, KKT conditions are also sufficient for
optimality.

Sufficient condition for optimality:
Given a convex problem (f convex, S convex) and (x∗,α∗,β∗)
satisfies the KKT conditions. Then x∗ is a global solution to the
problem.
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REGULARITY CONDITIONS

There are different regularity conditions (or constraint qualifications)
that ensure that the KKT conditions apply (ACQ, LICQ, MFCQ, Slater
condition, ...).

To be able to use the above results, at least one regularity condition
must be examined to prove that the function behaves “regular”.

We do not go further into these regularity conditions here and refer to
https:

//docs.ufpr.br/~ademir.ribeiro/ensino/cm721/kkt.pdf.
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RIDGE REGRESSION

The following two formulas are common for ridge regression:

Formula 1:

min
θ

fλ(θ) := ∥y − Xθ∥2
2 + λ∥θ∥2

2 (1)

Formula 2:

min
θ

∥y − Xθ∥2
2

s.t. ∥θ∥2
2 − t ≤ 0

(2)

Why are these two formulas (for appropriate values t, λ) equivalent?
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RIDGE REGRESSION / 2

Visualization: see additional material

Quadratic-Loss for the cars dataset without penalty.
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RIDGE REGRESSION / 3

Left: loss for Ridge regression with penalty term. Right: loss for ridge
regression with corresponding constraint.
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RIDGE REGRESSION / 4

First, consider (1). If θ∗ is our minimum, then the necessary condition
applies.

∇fλ(θ
∗) = −2yT X + 2(θ∗)T XT X + 2λ(θ∗)T = 0.

We now show that we can find a t so that θ∗ is also solution for (2).

We calculate the Lagrange function of (2)

L(θ, α) = ∥y − Xθ∥2
2 + α(∥θ∥2

2 − t).

The first KKT condition (stationarity of the Lagrange function) is

∇θL(θ, α) = −2yT X + 2θT XT X + 2αθT = 0.

Since we know from (1) that ∇fλ(θ∗) = 0, this condition is fulfilled if we
set θ = θ∗ and α = λ.
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RIDGE REGRESSION / 5

However, complementary slackness must still apply for the KKT
conditions.

α(∥θ∥2
2 − t) = 0

This is the case if we choose t = ∥θ∗∥2.

Vice versa it can be shown that a solution of (2) is a solution of (1) if we
set λ = α.
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