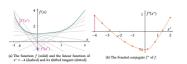
Optimization in Machine Learning

Other forms of duality



Learning goals

- Dual norms
- Conjugate functions
- Fenchel duality
- Examples in statistics

CONSTRAINED MINIMIZATION AND DUAL NORMS

Consider the problem of norm minimization under linear constraints in its primal form:

$$\begin{array}{ll} \min_{\mathbf{x}\in\mathbb{R}^d} & \|\mathbf{x}\| \\ \text{s.t.} & \mathbf{G}\mathbf{x} = \mathbf{h}, \end{array}$$

× × ×

where $\|\cdot\|$ is some norm function. For instance, if the norm is the *L*1 norm, this problem is the famous \bullet basis pursuit problem.

Question: Is there a more straightforward way to solve constrained optimization problems involving norms?

CONSTRAINED MINIMIZATION AND DUAL NORMS / 2

Here, the concept of the dual norm from functional analysis can be helpful.

Definition: Let $||\mathbf{x}||$ be the norm of \mathbf{x} . Then the dual norm $||\mathbf{x}||_*$ is defined as

$$\|\boldsymbol{x}\|_* = \max_{\|\boldsymbol{z}\| \leq 1} \boldsymbol{z}^T \boldsymbol{x}$$

Using this definition, one can show that if $||\mathbf{x}||$ is a norm and $||\mathbf{x}||_*$ is the dual norm of it, $||\mathbf{z}^T\mathbf{x}|| \le ||\mathbf{z}|| ||\mathbf{x}||_*$ holds.

Examples: The dual norm of the Lp norm $\|\cdot\|_p$ is the Lq norm $\|\cdot\|_q$ where it holds that 1/p + 1/q = 1.

CONSTRAINED PROBLEMS AND CONJUGATE FUNCTIONS

× × ×