Optimization in Machine Learning

Nonlinear programs and Lagrangian

Learning goals
@ Lagrangian for general constrained
optimization
@ Geometric intuition for Lagrangian
duality
@ Properties and examples
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NONLINEAR CONSTRAINED OPTIMIZATION

Previous lecture: Linear programs

min f(x):=c'x

xeRd

s.t. Ax <b
Gx=h

Related to its (Lagrange) dual formulation by the Lagrangian
L(x,a,8) =c'x+a' (Ax—b)+ 8" (Gx —h).
Weak duality: For o > 0 and 3:

f(x*) > min L(x,a,B) > xrglirgdﬁ(xv a,B) = g(a,B)

Recall: Implicit domain constraint in Lagrange dual function g(c, 3).
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NONLINEAR CONSTRAINED OPTIMIZATION /2

General form of a constraint optimization problem

i f(x

xne‘]IIEg’ ()
s.t. gi(x) <0, i=1,...,k,
hj(x):07 j:17' 76

@ Functions f, g;, h; generally nonlinear
@ Transfer the Lagrangian from linear programs:

J4
£(X Q, ,3 —|— Z (X,g, —|— Z thj(X)
j=1

@ Dual variables «; > 0 and j; are also called Lagrange multipliers.
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CONSTRAINED PROBLEMS: THE DIRECT WAY

Simple constrained problems can be solved in a direct way.

Example 1:

min 2—x°

x€R

s.t. x—1=0
Solution: Resolve the constraint by

x—1=0
x=1

and insert it into the objective:
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CONSTRAINED PROBLEMS: THE DIRECT WAY /2
Example 2:

min —2 4 x2 +2x5
x€R?
st. X4+ x2-1=0

Solution: Resolve the constraint
x12 =1- x22

and insert it into the objective

f(x1,x)=—-2+(1— x22) + 2x22

= —1+x5.

= Minimum at x* = (#1,0) ". However, direct way mostly not possible.
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM"

Question 1: Is there a general recipe for solving general constrained
nonlinear optimization problems?

Question 2: Can we understand this recipe geometrically?

Question 3: How does this relate to the Lagrange function approach?

For this purpose, we consider the classical “milkmaid problem”; the
following example is taken from Steuard Jensen, An Introduction to
Lagrange Multipliers (but the example works of course equally well with
a “milk man”).

@ Assume a milk maid is sent to the field to get the day’s milk
@ The milkmaid wants to finish her job as quickly as possible
@ However, she has to clean her bucket first at the nearby river.
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" /2

Where is the best point P to clean her bucket?
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" /3
Aim: Find point P at the river for minimum total distance f(P) O 0 X

e f(P):=d(M,P)+ d(P, C) (d measures distance) x O
@ h(P) = 0 describes the river
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" /4

Corresponding optimization problem: O O x

)T’IXI'; f(X1 R Xg) x O

s.t. h(X1 s X2) =0
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" /5

Question: How far can the milkmaid get for a fixed total distance f(P)? O O x
Assume: We only care about d(M, P).

Observe: Radius of circle touching river first is the minimal distance.
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" /6

@ For f(P) = d(M, P) + d(P, C): Use an ellipse.
@ Def.: Given two focal points F;, F, and distance 2a:

E={PcR?|d(F,P)+d(P,F,)=2a}

|PFy| + |PFy| = 2a
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" /7

@ Let M and C be focal points of a collection of ellipses O O x
@ Find smallest ellipse touching the river h(x1, x2)
@ Define P as the touching point X O

Question: How can we make sense of this mathematically?

Optimization in Machine Learning — 11/18



A CLASSIC EXAMPLE: "MILKMAID PROBLEM" /8

@ Recall: Gradient is normal (perpendicular) to contour lines O O x
@ Since contour lines of f and h touch, gradients are parallel:

Vi(P) = SVh(P)

@ Multiplier 5 is called Lagrange multiplier. x x
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LAGRANGE FUNCTION

General: Solve problem with single equality constraint by: X
Vi(x) = SV h(x) x
h(x) =0

X X

@ First line: Parallel gradients | Second line: Constraint
Observe: Above system is equivalent to

VL(x,8) =0

for Lagrange function (or Lagrangian) £(x, ) := f(x) + Bh(x)

Indeed:
() - (™)
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LAGRANGE FUNCTION /2

Idea can be extended to inequality constraints g(x) < 0.
There are two possible cases for a solution:
@ Solution x;, inside feasible set: constraint is inactive (ap = 0)
@ Solution x5 on boundary g(x) = 0: Vf(Xx5) = aaVg(Xa) (g > 0)
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LAGRANGE FUNCTION AND PRIMAL PROBLEM

General constrained optimization problems:

min f(x)
st gi(x) <0, i=1,...,k
hj(X) = 0, j: 1, s

Extend Lagrangian (a; > 0, 8; Lagrange multipliers):

¢
(X (6] ,6 —l— Z a,g, —|— Z thj(X)
=

Equivalent primal problem:

min max L(Xx
in max L(x, o, B)

Question: Why?
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LAGRANGE FUNCTION AND PRIMAL PROBLEM /2
For simplicity: Consider only single inequality constraint g(x) < 0

If x breaks inequality constraint (g(x) > 0):

max L(x,a) = max f(x) + ag(x) = oo

If x satisfies inequality constraint (g(x) < 0):

max L(x,a) = max f(x) + ag(x) = f(x)

Combining yields original formulation:

if
min max £(X, o) = oo ' g(x) >0
X a0 miny f(x) ifg(x) <0

Similar argument holds for equality constraints h;(x)
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EXAMPLE: LAGRANGE FUNCTION FOR QP’S

We consider quadratic programming
: 1T
min f(x) = 5X Qx
st. h(x):=Cx—d=0
with @ € R9*? symmetric, C € R*9 and d € RY.

Lagrange function: £(x, 3) = 2x' Qx + 3" (Cx — d)

Solve

cete - (2628) - (% 7)o

- @90

Observe: Solve QP by solving a linear system
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LAGRANGE DUALITY

Dual problem:

in £(x
Mmax_ min (x, v, B)

Define Lagrange dual function g(«a, 3) := miny £L(X, «, 3)

Important characteristics of the dual problem:

@ Convexity (pointwise minimum of affine functions)

o Gives methods based on dual solutions
e Might be computationally inefficient (expensive minimizations)

@ Weak duality:
f(x*) > g(a”, B7)

@ Strong duality if primal problem satisfies Slater’s condition!):

f(x*) = g(a”, B7)

(") slater’s condition: Primal problem convex and “strictly feasible” (3xVi : gi(x) < 0).
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