Optimization in Machine Learning

Nonlinear programs and Lagrangian

Learning goals

- Lagrangian for general constrained optimization
- Geometric intuition for Lagrangian duality
- Properties and examples

NONLINEAR CONSTRAINED OPTIMIZATION

Previous lecture: **Linear programs**

$$
\min_{\mathbf{x} \in \mathbb{R}^d} \qquad f(\mathbf{x}) := \mathbf{c}^\top \mathbf{x}
$$
\n
$$
\text{s.t.} \qquad \mathbf{A}\mathbf{x} \le \mathbf{b}
$$
\n
$$
\mathbf{G}\mathbf{x} = \mathbf{h}
$$

 $\overline{\mathbf{x}\ \mathbf{x}}$

Related to its (Lagrange) dual formulation by the *Lagrangian*

$$
\mathcal{L}(\mathbf{x}, \alpha, \beta) = \mathbf{c}^{\top}\mathbf{x} + \alpha^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b}) + \beta^{\top}(\mathbf{G}\mathbf{x} - \mathbf{h}).
$$

Weak duality: For $\alpha \geq 0$ and β :

$$
f(\mathbf{x}^*) \geq \min_{\mathbf{x} \in \mathcal{S}} \mathcal{L}(\mathbf{x}, \alpha, \beta) \geq \min_{\mathbf{x} \in \mathbb{R}^d} \mathcal{L}(\mathbf{x}, \alpha, \beta) =: g(\alpha, \beta)
$$

Recall: Implicit domain constraint in *Lagrange dual function* $g(\alpha, \beta)$ *.*

NONLINEAR CONSTRAINED OPTIMIZATION / 2

General form of a constraint optimization problem

$$
\min_{\mathbf{x} \in \mathbb{R}^d} \quad f(\mathbf{x})
$$
\ns.t. $g_i(\mathbf{x}) \le 0, \quad i = 1, ..., k,$
\n $h_j(\mathbf{x}) = 0, \quad j = 1, ..., \ell.$

X X

- Functions *f*, *gⁱ* , *h^j* generally nonlinear
- Transfer the Lagrangian from linear programs:

$$
\mathcal{L}(\mathbf{x}, \alpha, \beta) := f(\mathbf{x}) + \sum_{i=1}^k \alpha_i g_i(\mathbf{x}) + \sum_{j=1}^\ell \beta_j h_j(\mathbf{x})
$$

• Dual variables $\alpha_i \geq 0$ and β_i are also called *Lagrange multipliers*.

CONSTRAINED PROBLEMS: THE DIRECT WAY

Simple constrained problems can be solved in a direct way.

Example 1:

$$
\min_{x \in \mathbb{R}} \quad 2 - x^2
$$

s.t.
$$
x - 1 = 0
$$

Solution: Resolve the constraint by

$$
x - 1 = 0
$$

$$
x = 1
$$

and insert it into the objective:

$$
x^* = 1, \quad f(x^*) = 1
$$

X $\times\overline{\times}$

CONSTRAINED PROBLEMS: THE DIRECT WAY / 2

Example 2:

$$
\min_{\mathbf{x} \in \mathbb{R}^2} \quad -2 + x_1^2 + 2x_2^2
$$
\n
$$
\text{s.t.} \quad x_1^2 + x_2^2 - 1 = 0
$$

$$
\begin{array}{c}\n\circ & \times \\
\hline\n\circ & \circ \\
\hline\n\star & \circ \\
\hline\n\star & \times\n\end{array}
$$

Solution: Resolve the constraint

$$
x_1^2=1-x_2^2
$$

and insert it into the objective

$$
f(x_1, x_2) = -2 + (1 - x_2^2) + 2x_2^2
$$

= -1 + x_2^2.

 \Rightarrow Minimum at $\pmb{x}^* = (\pm 1, 0)^\top.$ However, direct way mostly not possible.

Question 1: Is there a general recipe for solving general constrained nonlinear optimization problems? **Question 2:** Can we understand this recipe geometrically? **Question 3:** How does this relate to the Lagrange function approach?

For this purpose, we consider the classical "milkmaid problem"; the following example is taken from *Steuard Jensen, An Introduction to Lagrange Multipliers* (but the example works of course equally well with a "milk man").

- Assume a milk maid is sent to the field to get the day's milk
- The milkmaid wants to finish her job as quickly as possible
- However, she has to clean her bucket first at the nearby river.

X X

Where is the best point *P* to clean her bucket?

OX \times \times

Aim: Find point *P* at the river for minimum total distance *f*(*P*)

- $f(P) := d(M, P) + d(P, C)$ (*d* measures distance)
- $h(P) = 0$ describes the river

X $\times\overline{\times}$

Corresponding optimization problem:

$$
\min_{x_1, x_2} f(x_1, x_2) \ns.t. \quad h(x_1, x_2) = 0
$$

 \mathbf{X} \overline{x}

Question: How far can the milkmaid get for a fixed total distance *f*(*P*)?

Assume: We only care about *d*(*M*, *P*).

Observe: Radius of circle touching river first is the minimal distance.

• For $f(P) = d(M, P) + d(P, C)$: Use an **ellipse**.

• Def.: Given two focal points F_1 , F_2 and distance 2*a*:

$$
E = \{ P \in \mathbb{R}^2 \mid d(F_1, P) + d(P, F_2) = 2a \}
$$

X \times \times

- Let *M* and *C* be focal points of a collection of ellipses
- Find **smallest** ellipse touching the river $h(x_1, x_2)$
- Define *P* as the touching point

Question: How can we make sense of this mathematically?

© Optimization in Machine Learning – 11 / 18

X

XX

- **Recall:** Gradient is normal (perpendicular) to contour lines
- Since contour lines of *f* and *h* touch, gradients are parallel:

 $\nabla f(P) = \beta \nabla h(P)$

Multiplier β is called **Lagrange multiplier**.

X \times \times

LAGRANGE FUNCTION

General: Solve problem with single equality constraint by:

$$
\nabla f(\mathbf{x}) = \beta \nabla h(\mathbf{x})
$$

$$
h(\mathbf{x}) = 0
$$

XX

First line: Parallel gradients | **Second line:** Constraint **Observe:** Above system is equivalent to

$$
\nabla \mathcal{L}(\mathbf{x},\beta) = \mathbf{0}
$$

for **Lagrange function** (or **Lagrangian**) $\mathcal{L}(\mathbf{x}, \beta) := f(\mathbf{x}) + \beta h(\mathbf{x})$

Indeed:

$$
\begin{pmatrix} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \beta) \\ \nabla_{\beta} \mathcal{L}(\mathbf{x}, \beta) \end{pmatrix} = \begin{pmatrix} \nabla f(\mathbf{x}) + \beta \nabla h(\mathbf{x}) \\ h(\mathbf{x}) \end{pmatrix}
$$

LAGRANGE FUNCTION / 2

Idea can be extended to **inequality** constraints $g(\mathbf{x}) \leq 0$.

There are two possible cases for a solution:

- Solution \mathbf{x}_b inside feasible set: constraint is inactive ($\alpha_b = 0$)
- \bullet Solution **x**_{*a*} on boundary *g*(**x**) = 0: ∇ *f*(**x**_{*a*}) = α _{*a*} ∇ *g*(**x**_{*a*}) (α _{*a*} > 0)

LAGRANGE FUNCTION AND PRIMAL PROBLEM

General constrained optimization problems:

$$
\min_{\mathbf{x}} f(\mathbf{x})
$$

s.t. $g_i(\mathbf{x}) \le 0, \quad i = 1, ..., k$
 $h_j(\mathbf{x}) = 0, \quad j = 1, ..., \ell$

Extend Lagrangian ($\alpha_i \geq 0$, β_i Lagrange multipliers):

$$
\mathcal{L}(\mathbf{x}, \alpha, \beta) := f(\mathbf{x}) + \sum_{i=1}^k \alpha_i g_i(\mathbf{x}) + \sum_{j=1}^\ell \beta_j h_j(\mathbf{x})
$$

Equivalent primal problem:

$$
\min_{\mathbf{x}}\max_{\boldsymbol{\alpha}\geq 0,\boldsymbol{\beta}}\mathcal{L}(\mathbf{x},\boldsymbol{\alpha},\boldsymbol{\beta})
$$

Question: Why?

 $\times\overline{\times}$

LAGRANGE FUNCTION AND PRIMAL PROBLEM / 2

For simplicity: Consider only single inequality constraint $g(\mathbf{x}) \leq 0$

If **x breaks** inequality constraint $(g(\mathbf{x}) > 0)$:

$$
\max_{\alpha \geq 0} \mathcal{L}(\mathbf{x}, \alpha) = \max_{\alpha \geq 0} f(\mathbf{x}) + \alpha g(\mathbf{x}) = \infty
$$

If **x satisfies** inequality constraint $(g(\mathbf{x}) \leq 0)$:

$$
\max_{\alpha \geq 0} \mathcal{L}(\mathbf{x}, \alpha) = \max_{\alpha \geq 0} f(\mathbf{x}) + \alpha g(\mathbf{x}) = f(\mathbf{x})
$$

Combining yields **original formulation**:

$$
\min_{\mathbf{x}} \max_{\alpha \ge 0} \mathcal{L}(\mathbf{x}, \alpha) = \begin{cases} \infty & \text{if } g(\mathbf{x}) > 0 \\ \min_{\mathbf{x}} f(\mathbf{x}) & \text{if } g(\mathbf{x}) \le 0 \end{cases}
$$

Similar argument holds for equality constraints *hj*(**x**)

EXAMPLE: LAGRANGE FUNCTION FOR QP'S

We consider quadratic programming

$$
\min_{\mathbf{x}} f(\mathbf{x}) := \frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}
$$

s.t. $h(\mathbf{x}) := \mathbf{C} \mathbf{x} - \mathbf{d} = \mathbf{0}$

with $\mathbf{Q} \in \mathbb{R}^{d \times d}$ symmetric, $\mathbf{C} \in \mathbb{R}^{\ell \times d}$, and $\mathbf{d} \in \mathbb{R}^{\ell}.$ Lagrange function: $\mathcal{L}(\mathbf{x}, \beta) = \frac{1}{2} \mathbf{x}^\top \mathbf{Q} \mathbf{x} + \beta^\top (\mathbf{C} \mathbf{x} - \mathbf{d})$ Solve

$$
\nabla \mathcal{L}(\mathbf{x}, \beta) = \begin{pmatrix} \partial \mathcal{L}/\partial \mathbf{x} \\ \partial \mathcal{L}/\partial \beta \end{pmatrix} = \begin{pmatrix} \mathbf{Q}\mathbf{x} + \mathbf{C}^\top \beta \\ \mathbf{C}\mathbf{x} - \mathbf{d} \end{pmatrix} = \mathbf{0}
$$

$$
\Leftrightarrow \qquad \qquad \begin{pmatrix} \mathbf{Q} & \mathbf{C}^\top \\ \mathbf{C} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \beta \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{d} \end{pmatrix}
$$

Observe: Solve QP by solving a linear system

© Optimization in Machine Learning – 17 / 18

 \times \times

LAGRANGE DUALITY

Dual problem:

$$
\max_{\boldsymbol{\alpha} \geq 0, \boldsymbol{\beta}} \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

Define **Lagrange dual function** $g(\alpha, \beta) := \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \alpha, \beta)$

Important characteristics of the dual problem:

- **Convexity** (pointwise minimum of *affine* functions)
	- Gives methods based on dual solutions
	- Might be computationally inefficient (expensive minimizations)
- **Weak duality:**

 $f(\mathbf{x}^*) \geq g(\alpha^*, \beta^*)$

Strong duality if primal problem satisfies *Slater's condition*(1) :

$$
\mathit{f}(\bm{x}^*) = g(\bm{\alpha}^*, \bm{\beta}^*)
$$

Slater's condition: Primal problem convex and "strictly feasible" (\exists **x** \forall *i* : g_i (**x**) < 0).

 \times \times