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NONLINEAR CONSTRAINED OPTIMIZATION

Previous lecture: Linear programs

min
x∈Rd

f (x) := c⊤x

s.t. Ax ≤ b

Gx = h

Related to its (Lagrange) dual formulation by the Lagrangian

L(x,α,β) = c⊤x +α⊤(Ax − b) + β⊤(Gx − h).

Weak duality: For α ≥ 0 and β:

f (x∗) ≥ min
x∈S

L(x,α,β) ≥ min
x∈Rd

L(x,α,β) =: g(α,β)

Recall: Implicit domain constraint in Lagrange dual function g(α,β).
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NONLINEAR CONSTRAINED OPTIMIZATION / 2

General form of a constraint optimization problem

min
x∈Rd

f (x)

s.t. gi(x) ≤ 0, i = 1, . . . , k ,

hj(x) = 0, j = 1, . . . , ℓ.

Functions f , gi , hj generally nonlinear

Transfer the Lagrangian from linear programs:

L(x,α,β) := f (x) +
k∑

i=1

αigi(x) +
ℓ∑

j=1

βjhj(x)

Dual variables αi ≥ 0 and βi are also called Lagrange multipliers.
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CONSTRAINED PROBLEMS: THE DIRECT WAY

Simple constrained problems can be solved in a direct way.

Example 1:

min
x∈R

2 − x2

s.t. x − 1 = 0

Solution: Resolve the constraint by

x − 1 = 0

x = 1

and insert it into the objective:

x∗ = 1, f (x∗) = 1
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CONSTRAINED PROBLEMS: THE DIRECT WAY / 2

Example 2:

min
x∈R2

−2 + x2
1 + 2x2

2

s.t. x2
1 + x2

2 − 1 = 0

Solution: Resolve the constraint

x2
1 = 1 − x2

2

and insert it into the objective

f (x1, x2) = −2 + (1 − x2
2 ) + 2x2

2

= −1 + x2
2 .

⇒ Minimum at x∗ = (±1, 0)⊤. However, direct way mostly not possible.
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM"

Question 1: Is there a general recipe for solving general constrained
nonlinear optimization problems?
Question 2: Can we understand this recipe geometrically?
Question 3: How does this relate to the Lagrange function approach?

For this purpose, we consider the classical “milkmaid problem”; the
following example is taken from Steuard Jensen, An Introduction to
Lagrange Multipliers (but the example works of course equally well with
a “milk man”).

Assume a milk maid is sent to the field to get the day’s milk

The milkmaid wants to finish her job as quickly as possible

However, she has to clean her bucket first at the nearby river.
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" / 2

Where is the best point P to clean her bucket?
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" / 3

Aim: Find point P at the river for minimum total distance f (P)

f (P) := d(M,P) + d(P,C) (d measures distance)

h(P) = 0 describes the river
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" / 4

Corresponding optimization problem:

min
x1,x2

f (x1, x2)

s.t. h(x1, x2) = 0
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" / 5

Question: How far can the milkmaid get for a fixed total distance f (P)?

Assume: We only care about d(M,P).

Observe: Radius of circle touching river first is the minimal distance.
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" / 6

For f (P) = d(M,P) + d(P,C): Use an ellipse.

Def.: Given two focal points F1, F2 and distance 2a:

E = {P ∈ R2 | d(F1,P) + d(P,F2) = 2a}
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" / 7

Let M and C be focal points of a collection of ellipses

Find smallest ellipse touching the river h(x1, x2)

Define P as the touching point

Question: How can we make sense of this mathematically?
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A CLASSIC EXAMPLE: "MILKMAID PROBLEM" / 8

Recall: Gradient is normal (perpendicular) to contour lines

Since contour lines of f and h touch, gradients are parallel:

∇f (P) = β∇h(P)

Multiplier β is called Lagrange multiplier.
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LAGRANGE FUNCTION

General: Solve problem with single equality constraint by:

∇f (x) = β∇h(x)

h(x) = 0

First line: Parallel gradients | Second line: Constraint

Observe: Above system is equivalent to

∇L(x, β) = 0

for Lagrange function (or Lagrangian) L(x, β) := f (x) + βh(x)

Indeed: (
∇xL(x, β)
∇βL(x, β)

)
=

(
∇f (x) + β∇h(x)

h(x)

)
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LAGRANGE FUNCTION / 2

Idea can be extended to inequality constraints g(x) ≤ 0.

There are two possible cases for a solution:

Solution xb inside feasible set: constraint is inactive (αb = 0)

Solution xa on boundary g(x) = 0: ∇f (xa) = αa∇g(xa) (αa > 0)
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LAGRANGE FUNCTION AND PRIMAL PROBLEM

General constrained optimization problems:

min
x

f (x)

s.t. gi(x) ≤ 0, i = 1, . . . , k

hj(x) = 0, j = 1, . . . , ℓ

Extend Lagrangian (αi ≥ 0, βi Lagrange multipliers):

L(x,α,β) := f (x) +
k∑

i=1

αigi(x) +
ℓ∑

j=1

βjhj(x)

Equivalent primal problem:

min
x

max
α≥0,β

L(x,α,β)

Question: Why?
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LAGRANGE FUNCTION AND PRIMAL PROBLEM / 2

For simplicity: Consider only single inequality constraint g(x) ≤ 0

If x breaks inequality constraint (g(x) > 0):

max
α≥0

L(x, α) = max
α≥0

f (x) + αg(x) = ∞

If x satisfies inequality constraint (g(x) ≤ 0):

max
α≥0

L(x, α) = max
α≥0

f (x) + αg(x) = f (x)

Combining yields original formulation:

min
x

max
α≥0

L(x, α) =

{
∞ if g(x) > 0

minx f (x) if g(x) ≤ 0

Similar argument holds for equality constraints hj(x)
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EXAMPLE: LAGRANGE FUNCTION FOR QP’S

We consider quadratic programming

min
x

f (x) :=
1
2

x⊤Qx

s.t. h(x) := Cx − d = 0

with Q ∈ Rd×d symmetric, C ∈ Rℓ×d , and d ∈ Rℓ.

Lagrange function: L(x,β) = 1
2x⊤Qx + β⊤(Cx − d)

Solve

∇L(x,β) =
(
∂L/∂x
∂L/∂β

)
=

(
Qx + C⊤β

Cx − d

)
= 0

⇔
(

Q C⊤

C 0

)(
x
β

)
=

(
0
d

)
Observe: Solve QP by solving a linear system
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LAGRANGE DUALITY

Dual problem:
max
α≥0,β

min
x

L(x,α,β)

Define Lagrange dual function g(α,β) := minx L(x,α,β)

Important characteristics of the dual problem:

Convexity (pointwise minimum of affine functions)
Gives methods based on dual solutions
Might be computationally inefficient (expensive minimizations)

Weak duality:
f (x∗) ≥ g(α∗,β∗)

Strong duality if primal problem satisfies Slater’s condition(1):

f (x∗) = g(α∗,β∗)

(1) Slater’s condition: Primal problem convex and “strictly feasible” (∃x∀i : gi(x) < 0).
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