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Duality in optimization

Learning goals
Awareness of the concept of duality
in optimization

LP duality

Weak and strong duality in LP



DUALITY: OVERVIEW

Duality theory plays a fundamental role in (constrained)
optimization. The concept of “duality" emerged in the context of
LPs and dates back to the 1940s (works of Tucker and Wolfe).

There are several different types of duality: LP duality, Lagrangian
duality, Wolfe duality, Fenchel duality (which can lead to
confusion).

Key take-home message: The concepts of duality give you recipes
to find lower bounds on your original “primal" constrained
optimization problem. Under certain conditions, these lower
bounds are actually identical to the optimal solution.

Duality is also practical. It has been used to find better
algorithms for solving constrained optimization problems
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LP DUALITY: INTRODUCTORY EXAMPLE

Example:
A bakery sells brownies for 50 ct and mini cheesecakes for 80 ct each.
The two products contain the following ingredients

Chocolate Sugar Cream cheese
Brownie 3 2 2

Cheesecake 0 4 5

A student wants to minimize his expenses, but at the same time eat at
least 6 units of chocolate, 10 units of sugar and 8 units of cream
cheese.
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LP DUALITY: INTRODUCTORY EXAMPLE / 2

He is therefore confronted with the following optimization problem:

min
x∈R2

50x1 + 80x2

s.t. 3x1 ≥ 6

2x1 + 4x2 ≥ 10

2x1 + 5x2 ≥ 8

x ≥ 0
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LP DUALITY: INTRODUCTORY EXAMPLE / 3

The solution of the Simplex algorithm:

res = solveLP(cvec = c, bvec = b, Amat = A)

summary(res)

##

##

## Results of Linear Programming / Linear Optimization

##

## Objective function (Minimum): 220

##

## Solution

## opt

## 1 2.0

## 2 1.5
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LP DUALITY: INTRODUCTORY EXAMPLE / 4

The baker informs the supplier that he needs at least 6 units of
chocolate, 10 units of sugar and 8 units of cream cheese to meet the
student’s requirements.

The supplier asks himself how he must set the prices for chocolate,
sugar and cream cheese (α1, α2, α3) such that he can

maximize his revenue

max
α∈R3

6α1 + 10α2 + 8α3

and at the same time ensure that the baker buys from him
(purchase cost ≤ selling price)

3α1 + 2α2 + 2α3 ≤ 50 Brownie

4α2 + 5α3 ≤ 80 Cheesecake
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LP DUALITY: INTRODUCTORY EXAMPLE / 5

The presented example is known as a dual problem. The variables αi

are called dual variables.

In an economic context, dual variables can often be interpreted as
shadow prices for certain goods.

If we solve the dual problem, we see that the dual problem has the
same objective function value as the primal problem. This is later
referred to as strong duality.
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LP DUALITY: INTRODUCTORY EXAMPLE / 6

res = solveLP(cvec = c, bvec = b, Amat = A, maximum = T)

summary(res)

##

##

## Results of Linear Programming / Linear Optimization

##

## Objective function (Maximum): 220

##

## Solution

## opt

## 1 3.333333

## 2 20.000000

## 3 0.000000
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MATHEMATICAL INTUITION

The example explained duality from an economic point of view. But
what is the mathematical intuition behind duality?

Idea: In minimization problems one is often interested in lower
bounds of the objective function. How could we derive a lower bound
for the problem above?

If we “skillfully” multiply the three inequalities by factors and add factors
(similar to a linear system), we can find a lower bound.
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MATHEMATICAL INTUITION / 2

min
x∈R2

50x1 + 80x2

s.t. 3x1 ≥ 6 |·5
2x1 + 4x2 ≥ 10 |·5
2x1 + 5x2 ≥ 8 |·12

x ≥ 0

If we add up the constraints we obtain

5 · (3x1) + 5 · (2x1 + 4x2) + 12 · (2x1 + 5x2)

= 15x1 + 10x1 + 24x1 + 20x2 + 60x2

= 49x1 + 80x2

≥ 30 + 50 + 96 = 176

Since x1 ≥ 0 we found a lower bound because

50x1 + 80x2 ≥ 49x1 + 80x2 ≥ 176.
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MATHEMATICAL INTUITION / 3

Is our derived lower bound the best possible?

We replace the multipliers 5, 5, 12 by α1, α2, α3 and compute:

50x1 + 80x2 ≥ α1(3x1) + α2(2x1 + 4x2) + α3(2x1 + 5x2)

= (3α1 + 2α2 + 2α3)x1 + (4α2 + 5α3)x2

≥ 6α1 + 10α2 + 8α3

But: We have to demand that

3α1 + 2α2 + 2α3 ≤ 50

4α2 + 5α3 ≤ 80
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MATHEMATICAL INTUITION / 4

We are interested in a largest possible lower bound.

This yields the dual problem:

max
α∈R3

6α1 + 10α2 + 8α3

s.t. 3α1 + 2α2 + 2α3 ≤ 50

4α2 + 5α3 ≤ 80

α ≥ 0
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DUALITY

Dual problem:

max
α∈Rm

g(α) := α⊤b

s.t. α⊤A ≤ c⊤

α ≥ 0

Primal problem:

min
x∈Rn

f (x) := c⊤x

s.t. Ax ≥ b

x ≥ 0
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DUALITY / 2

Connection of primal and dual problem:

Primal
(minimize)

Dual
(maximize)

condition
≤ ≤ 0

variable≥ ≥ 0
= unconstrained

variable
≥ 0 ≤

condition≤ 0 ≥
unconstrained =
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DUALITY THEOREM

In general, the weak duality theorem applies to all feasible x,α

g(α) = α⊤b ≤ c⊤x = f (x)

The value of the dual function is therefore always a lower bound for the
objective function value of the primal problem.

Proof:

α⊤b
Ax≥b
≤ α⊤Ax

α⊤A≤c⊤

≤ c⊤x
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DUALITY THEOREM / 2

The strong duality theorem states that if one of the two problems has
a constrained solution, then the other also has a constrained solution.
The objective function values are the same in this case:

g(α∗) = (α∗)⊤b = c⊤x∗ = f (x∗)

In this case, the dual problem can be solved instead of the primal
problem, which can lead to enormous run time advantages, especially
with many constraints and few variables.

The dual simplex algorithm, which has emerged as a standard
procedure for linear programming, is based on this idea.
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ALTERNATIVE LP FORMULATION

Unfortunately, many slightly different (but ultimately equivalent)
formulations of primal and dual LPs exist in the literature.
One common alternative with inequality and equality constraints is often
formulated as follows. Let c ∈ Rd , b ∈ Rl , A ∈ Rl×d , h ∈ Rk , and
G ∈ Rk×d .
Then the primal LP is defined as

min
x∈Rd

c⊤x

s.t. Gx = h

Ax ≤ b
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ALTERNATIVE LP FORMULATION / 2

and the corresponding dual LP

max
α∈Rl ,β∈Rk

−b⊤α− h⊤β

s.t. −A⊤α− G⊤β = c

α ≥ 0

The following argument again highlights the interpretation of the dual
LP as a lower bound. Here, for α ≥ 0 and any β, and x primal feasible,
it holds that

α⊤(Ax−b)+β⊤(Gx−h) ≤ 0 ⇐⇒ (−A⊤α−G⊤β)⊤x ≥ −b⊤α−h⊤β

So if c = −A⊤α− G⊤β, we get a lower bound on the primal optimal
value.
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ALTERNATIVE LP FORMULATION / 3

Another perspective on this formulation will connect LP duality to the
more general notion of Lagrangian duality. Again, for α ≥ 0, any β,
and x primal feasible, it holds that

c⊤x ≥ c⊤x +α⊤(Ax − b) + β⊤(Gx − h) =: L(x,α,β)

If S denotes the primal feasible set, f (x∗) the primal optimal value, then
for α ≥ 0 and any β, it holds that

f (x∗) ≥ min
x∈S

L(x,α,β) ≥ min
x∈Rd

L(x,α,β) =: g(α,β)

This shows that the function g(α,β) is a lower bound on f (x∗) for
α ≥ 0 and any β. It is the Lagrange (dual) function and defined as

g(α,β) =

{
−b⊤α− h⊤β if c = −A⊤α− G⊤β

−∞ otherwise
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ALTERNATIVE LP FORMULATION / 4

Maximizing g(α,β) leads again to the first dual formulation

Note: Lagrangian perspective is completely general
⇒ applicable to arbitrary (non-linear) problems

Final remarks:

We introduced key concepts of duality for Linear Programming as
the simplest instance of a constrained optimization problem.

We refer to the excellent course of L. Vandenberghe
EE236A - Linear Programming for many more details.

We have skipped algorithmic approaches for solving linear
programs: Dantzig’s Simplex Algorithm, Interior point methods,
and the Ellipsoid method.
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http://www.seas.ucla.edu/~vandenbe/ee236a/ee236a.html

