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LINEAR PROGRAMMING

Linear problems (LP):

linear objective function + linear constraints

Example: min −x1 − x2

s.t. x1 + 2x2 ≤ 1

2x1 + x2 ≤ 1

x1, x2 ≥ 0
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LINEAR PROGRAMMING / 2

(Sparse) Quantile regression:

min
β0,β

1
n

n∑
i=1

ρτ

(
y (i) − β0 − β⊤x(i)

)
s.t. ∥β∥1 ≤ t

where β0 ∈ R and β ∈ Rp are coefficients, and ρτ , τ ∈ [0, 1], is
the check function defined as

ρτ (s) =

{
τ · s if s > 0,

−1(1− τ) · s if s ≤ 0.

Case τ = 1/2: Median regression (a.k.a. least absolute errors
(LAE), least absolute deviations (LAD))

Parameter t ≥ 0 determines regularization.
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LINEAR PROGRAMMING / 3

Dantzig selector:

min
β∈Rp

∥β∥1

s.t. ∥X⊤(Xβ − y)∥∞ ≤ λ

where y ∈ Rn, X ∈ Rn×p, and λ > 0 is a tuning parameter. The infinity
norm is defined as ∥x∥∞ = max{|x1|, . . . , |xi |, . . . , |xn|} is

The Dantzig selector is similar (and behaves similar) to the Lasso and
was introduced for variable selection in the seminal paper by Terence
Tao and Emmanuel Candès (see moodle page for reference).

Details about LPs in statistical estimation can be found, e.g., in the PhD
thesis of Yonggong Gao ).
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LINEAR PROGRAMMING / 4

LPs can be formulated in the standard form:

max
x∈Rn

c⊤x

s.t. Ax ≤ b

x ≥ 0

with A ∈ Rm×n, b ∈ Rm

Constraints are to be understood componentwise

x ≥ 0: “non-negativity constraint”

c: “cost vector”
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LINEAR PROGRAMMING / 5

General LPs can be converted to standard form:

min←→ max: multiply objective function by −1

≤ ←→ ≥: multiply inequality by −1

=←→ ≤,≥: replace a⊤i x = bi by a⊤i x ≥ bi and a⊤i x ≤ bi

No non-negativity constraint: replace xi by x+
i − x−

i with
x+

i , x−
i ≥ 0 (positive and negative part)
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LINEAR PROGRAMMING / 6

Example:

min −x1 − x2

s.t. x1 + 2x2 ≤ 1

2x1 + x2 ≤ 1

x1, x2 ≥ 0

can also be formulated as

max (1, 1)
(

x1

x2

)
s.t.

(
1 2
2 1

)
x ≤

(
1
1

)
x ≥ 0
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GEOMETRIC INTERPRETATION

Linear programming can be interpreted geometrically.

Feasible set:

i-th inequality constraint: a⊤i x ≤ bi

Points {x : a⊤i x = bi} form a hyperplane in Rn

(ai is perpendicular to the hyperplane and called normal vector)

Points {x : a⊤i x ≥ bi} lie on the side of the hyperplane into which
the normal vector points (“half-space”)
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GEOMETRIC INTERPRETATION / 2

Each inequality divides the space into two halves.

Claim: Points satisfying all inequalities form a convex polytope.
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GEOMETRIC INTERPRETATION / 3

Geometry: A polytope is a generalized polygon in arbitrary dimensions.

A polytope consists of several sub-polytopes:

0-polytope: point

1-polytope: line

2-polytope: polygon, ...

General:

d-polytope is formed from several (d − 1)-polytopes (“facets”)

(d − 1)-polytope is formed from several (d − 2)-polytopes
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GEOMETRIC INTERPRETATION / 4

Observe: Points {x : a⊤i x = bi} lie on the boundary of the polytope.

Polytope {x : Ax ≤ b} is convex: For x1, x2 ∈ S and t ∈ [0, 1]

A(x1 + t(x2 − x1)) = Ax1 + t(Ax2 − Ax1)

= (1− t) Ax1︸︷︷︸
≤b

+t Ax2︸︷︷︸
≤b

≤ (1− t)b + tb = b

Polytope {x : Ax ≤ b} is an n-simplex, i.e.,

convex hull of n + 1 affinely independent points
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GEOMETRIC INTERPRETATION / 5

Objective function:

Linear case: Contour lines form a hyperplane

Observe: c is gradient and perpendicular to contour lines

Solution “touches” the polygon
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SOLUTIONS TO LP

There are 3 ways to solve linear programming:
1 Feasible set is empty⇒ LP is infeasible
2 Feasible set is “unbounded”
3 Feasible set is “bounded”⇒ LP has at least one solution
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SOLUTIONS TO LP / 2

If LP is solvable and constrained (neither case 1 nor case 2), there
is always an optimal point that can not be convexly combined from
other points in the polytope.

The optimal solution is then a corner, edge or side of the polytope.
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