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RECAP OF NEWTON’S METHOD

Second-order Taylor expansion of log-likelihood around the current X
iterate 0(1):

00) ~ E(e(ﬂ)+W(0(f>)T(9—0(f>)+%(9—0(0)T[vze(em)](e—e(f))
We then differentiate w.r.t. @ and set the gradient to zero: X X
v(00) + [v2e(0M)) (6 — 00y =0
Solving for 8(!) yields the pure Newton-Raphson update:
O+ = ) 1 [—v20(8)] 7T ve(0D)
Potential stability issue: pure Newton-Raphson updates do not

always converge. Its quadratic convergence rate is “local” in the sense
that it requires starting close to a solution.
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FISHER SCORING

Fisher’s scoring method replaces the negative observed Hessian
—V2((0) by the Fisher information matrix, i.e., the variance of V£(8),
which, under weak regularity conditions, equals the negative expected
Hessian

E[V(0)VL(0)"] = E[-V24(0)],

and is positive semi-definite under exchangeability of expectation and
differentiation.

NB: it can be shown that IE[V/(8)] = 0, which provides the expression
of the variance of V/(8) as the expected outer product of the gradients.

Therefore the Fisher scoring iterates are given by

o+ — () L E[—v2¢(6)] ' ve(e1)
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NEWTON-RAPHSON VS. FISHER SCORING

Aspect

Newton-Raphson

Fisher scoring

Second-order
Matrix

Exact negative
Hessian matrix

Fisher information matrix

Curvature

Exact

Approximated

Computational
Cost

Higher

Lower (often has a
simpler structure)

Convergence Fast but potentially Slower but more stable
unstable

Positive Not guaranteed Yes with

Definite Fisher information

Use Case General non-linear Likelihood-based models,

optimization

especially GLMs

In many cases Newton-Raphson and Fisher scoring are equivalent (see

below).
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LOGISTIC REGRESSION

The goal of logistic regression is to predict a binary event. Given n

observations (x(), y(0) € RP+' x {0,1}, y()|x) ~ Bernoulli(x(").

We want to minimize the following risk

n
Remp(O) = — Zy(l) |Og(7T(’)) + (1 _ y(l) IOg(1 _ 7T(I))>

with respect to 8, where the probabilistic classifier

70 =7 (x() | §) = s (f (x) | @)), the sigmoid function

s(f) = m and the score f (x() | 8) = 0 x.

NB: Note that %s(f) = s(f)(1 — s(f)) and ( |9) ( )

For more details we refer to the i2ml lecture.

Optimization in Machine Learning — 4/ 11

X X


https://slds-lmu.github.io/i2ml/chapters/11_advriskmin/

LOGISTIC REGRESSION /2

Partial derivative of empirical risk using chain rule:

or()

70) + (1 = y0) log(1 — ) T2

0
e
- () os(f (x| @)) of (x| 9)
__Z( ) 1—7r(’)> of (x() | 6) 00
1 T
=N (20— ) (x
$° (0 -40) ()

= (n(X| 6) —y) " X

where X = (x(‘)T, . ,x(”)T)T € RM(pH1) y = (y(1), . ,y(”))T,
w(X] 8) = (71'(1), e ,w(”))T e R".
vG/Rfemp = (3@97€emp)—r
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LOGISTIC REGRESSION /3

The Hessian of logistic regression:

V2 Remp = %Remp _ a% Z (w0 = y0) (x(o)T
i=1
_ zn: X0 (w@') (1 _ 7T(f))) (xw) !
- )I(:T1 DX

where D € R™" is a diagonal matrix containing the variances of y() on the
diagonals

D = diag (xV(1 — 7)., 7 (1 —2(7))
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LOGISTIC REGRESSION /4

We now have
VoRemp = X" (W(X| 9) - y)

Newton-Raphson:

ot+1) — (O _ [X"DX] "V g9 Remp
Fisher scoring:

pt+1) — (1) _ E[XTDX]qu(t)Remp

Note that the Hessian does not depend on the y() explicitly but only
depends on E[y()] = 7). Thus the expectation of the observed
Hessian w.r.t. y() ~ P(y()|x(), 0) coincides with VZRemp(0) itself.
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GENERALIZED LINEAR MODELS

y|x belongs to an exponential family with density:

p(y|d, ¢) = exp { yéa_(;(é)

] +C(y,¢>)}7

where 4 is the natural parameter and ¢ > 0 is the dispersion parameter.

We often take aj(¢) = % with ¢ a pos. constant, and w; is a weight.

Generalized linear models (GLMs) relate the conditional mean
wu(x) = E[y|x] of y to a linear predictor n via a strictly increasing link
function g(u) = n = x'6.

One can show that mean u = pu(x) = b'(6) = g~ '(n), variance
Var(y|x) = a(¢)b" (), where

ob(d)  9b(d) 96 O on 1 1

89 96 oponae o) g)”
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GENERALIZED LINEAR MODELS /2

We can estimate d using MLE with sample (x(), y()fori=1,... n.

Take a(’)(qb) = % ¢ is a positive constant, we could ignore it since the

goal is to maximize the function:
n wi(y) — )
Veo(5,0) = S MV~ 1)
0.9 = 2 51y
_ ¢ W(i)(y(/)—M(i))g'(ﬂ(i))x(/)
—~ V') (M)
= X"WG(Y — p)

. . - w()
W is a diagonal matrix with element V) GME

G is a diagonal matrix with element g/(()).

Optimization in Machine Learning — 9/ 11

X X



GENERALIZED LINEAR MODELS /3

n w0 o)™

—V20y(8, $) = Z O E"

wO(yO — ) (1" (8)g" (1) /9" (1)) oy T

*Z [/(2)g ()P o
wO(yO — DY (B"(5)/6"(9)) oy

*? B@g e

n ()
w N (T
E[-V20(5,0)] = > oo xOx0) T = XTwix
= b"(0)[g' (LM)]?
Iteratively Reweighted Least Squares (IRLS) with weights wl)

b (8)[g’ (1)]2

Optimization in Machine Learning — 10/ 11



GENERALIZED LINEAR MODELS /4
Fisher scoring:
0+ = 90 1 (XTWX) ' XTWG(Y — p)
— (xXTWx)"'X"w (G(Y — )+ xo(’))

For canonical link where 7 = 6 (= g(u) = x ' 6), the second and third
term of Hessian cancel each other out and Hessian coincides with
Fisher information matrix since

/11 (7

95 gy ~ o) [g(uO)P
This will now be a convex problem with Fisher scoring equal to
Newton’s method.

There are also hybrid algorithms that start out with IRLS which is easier
to initialize, and switch over to Newton-Raphson after some iterations.

Optimization in Machine Learning — 11/ 11

X X



