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RECAP OF NEWTON’S METHOD

Second-order Taylor expansion of log-likelihood around the current
iterate θ(t):

ℓ(θ) ≈ ℓ(θ(t))+∇ℓ(θ(t))⊤(θ−θ(t))+
1
2
(θ−θ(t))⊤[∇2ℓ(θ(t))](θ−θ(t))

We then differentiate w.r.t. θ and set the gradient to zero:

∇ℓ(θ(t)) + [∇2ℓ(θ(t))](θ − θ(t)) = 0

Solving for θ(t) yields the pure Newton-Raphson update:

θ(t+1) = θ(t) + [−∇2ℓ(θ(t))]−1∇ℓ(θ(t))

Potential stability issue: pure Newton-Raphson updates do not
always converge. Its quadratic convergence rate is “local” in the sense
that it requires starting close to a solution.
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FISHER SCORING

Fisher’s scoring method replaces the negative observed Hessian
−∇2ℓ(θ) by the Fisher information matrix, i.e., the variance of ∇ℓ(θ),
which, under weak regularity conditions, equals the negative expected
Hessian

E[∇ℓ(θ)∇ℓ(θ)⊤] = E[−∇2ℓ(θ)],

and is positive semi-definite under exchangeability of expectation and
differentiation.
NB: it can be shown that E[∇ℓ(θ)] = 0, which provides the expression
of the variance of ∇ℓ(θ) as the expected outer product of the gradients.

Therefore the Fisher scoring iterates are given by

θ(t+1) = θ(t) + E[−∇2ℓ(θ(t))]−1∇ℓ(θ(t))
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NEWTON-RAPHSON VS. FISHER SCORING

Aspect Newton-Raphson Fisher scoring
Second-order
Matrix

Exact negative
Hessian matrix

Fisher information matrix

Curvature Exact Approximated
Computational
Cost

Higher Lower (often has a
simpler structure)

Convergence Fast but potentially
unstable

Slower but more stable

Positive
Definite

Not guaranteed Yes with
Fisher information

Use Case General non-linear
optimization

Likelihood-based models,
especially GLMs

In many cases Newton-Raphson and Fisher scoring are equivalent (see
below).
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LOGISTIC REGRESSION

The goal of logistic regression is to predict a binary event. Given n
observations

(
x(i), y (i)

)
∈ Rp+1 × {0, 1}, y (i)| x(i) ∼ Bernoulli(π(i)).

We want to minimize the following risk

Remp(θ) = −
n∑

i=1

y (i) log(π(i)) +
(

1 − y (i) log(1 − π(i))
)

with respect to θ, where the probabilistic classifier
π(i) = π

(
x(i) | θ

)
= s

(
f
(
x(i) | θ

))
, the sigmoid function

s(f ) = 1
1+exp(−f ) and the score f

(
x(i) | θ

)
= θ⊤x.

NB: Note that ∂
∂f s(f ) = s(f )(1 − s(f )) and

∂f(x(i) | θ)
∂θ =

(
x(i)

)⊤
.

For more details we refer to the i2ml lecture.
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https://slds-lmu.github.io/i2ml/chapters/11_advriskmin/


LOGISTIC REGRESSION / 2

Partial derivative of empirical risk using chain rule:

∂

∂θ
Remp(θ) = −

n∑
i=1

∂

∂π(i)
(y (i) log(π(i)) + (1 − y (i)) log(1 − π(i)))

∂π(i)

∂θ

= −
n∑

i=1

(
y (i)

π(i)
− 1 − y (i)

1 − π(i)

)
∂s(f

(
x(i) | θ

)
)

∂f
(
x(i) | θ

) ∂f
(
x(i) | θ

)
∂θ

=
n∑

i=1

(
π(i) − y (i)

)(
x(i)

)⊤

= (π(X| θ)− y)⊤ X

where X =
(

x(1)
⊤
, . . . , x(n)

⊤)⊤
∈ Rn×(p+1), y =

(
y (1), . . . , y (n)

)⊤
,

π(X| θ) =
(
π(1), . . . , π(n)

)⊤ ∈ Rn.

∇θRemp =
(

∂
∂θRemp

)⊤
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LOGISTIC REGRESSION / 3

The Hessian of logistic regression:

∇2
θRemp =

∂2

∂θ⊤∂θ
Remp =

∂

∂θ⊤

n∑
i=1

(
π(i) − y (i)

)(
x(i)

)⊤

=
n∑

i=1

x(i)
(
π(i)

(
1 − π(i)

))(
x(i)

)⊤

= X⊤DX

where D ∈ Rn×n is a diagonal matrix containing the variances of y (i) on the
diagonals

D = diag
(
π(1)(1 − π(1)), . . . , π(n)(1 − π(n))

)
.
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LOGISTIC REGRESSION / 4

We now have
∇θRemp = X⊤ (π(X| θ)− y)

∇2
θRemp = X⊤DX

Newton-Raphson:

θ(t+1) = θ(t) − [X⊤DX]−1∇θ(t)Remp

Fisher scoring:

θ(t+1) = θ(t) − E[X⊤DX]−1∇θ(t)Remp

Note that the Hessian does not depend on the y (i) explicitly but only
depends on E[y (i)] = π(i). Thus the expectation of the observed
Hessian w.r.t. y (i) ∼ P(y (i)|x(i),θ) coincides with ∇2

θRemp(θ) itself.
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GENERALIZED LINEAR MODELS

y |x belongs to an exponential family with density:

p(y |δ, ϕ) = exp
{

yδ − b(δ)
a(ϕ)

+ c(y , ϕ)
}
,

where δ is the natural parameter and ϕ > 0 is the dispersion parameter.
We often take ai(ϕ) =

ϕ
wi

, with ϕ a pos. constant, and wi is a weight.

Generalized linear models (GLMs) relate the conditional mean
µ(x) = E[y |x] of y to a linear predictor η via a strictly increasing link
function g(µ) = η = x⊤θ.

One can show that mean µ = µ(x) = b′(δ) = g−1(η), variance
Var(y |x) = a(ϕ)b′′(δ), where

∂b(δ)
∂θ

=
∂b(δ)
∂δ

∂δ

∂µ

∂µ

∂η

∂η

∂θ
= µ

1
b′′(δ)

1
g′(µ)

x
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GENERALIZED LINEAR MODELS / 2

We can estimate δ using MLE with sample (x(i), y (i)) for i = 1, . . . , n.
Take a(i)(ϕ) = ϕ

w(i) , ϕ is a positive constant, we could ignore it since the
goal is to maximize the function:

∇ℓθ(δ, ϕ) =
n∑

i=1

wi(y (i) − µ(i))

b′′(δ)g′(µ(i))
x(i)

=
n∑

i=1

w(i)(y (i) − µ(i))g′(µ(i))

b′′(δ)[g′(µ(i))]2
x(i)

= X⊤WG(Y − µ)

W is a diagonal matrix with element w(i)

b′′(δ)[g′(µ(i))]2
.

G is a diagonal matrix with element g′(µ(i)).
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GENERALIZED LINEAR MODELS / 3

−∇2ℓθ(δ, ϕ) =
n∑

i=1

w(i)

b′′(δ)[g′(µ(i))]2
x(i)x(i)

⊤

+
n∑

i=1

w(i)(y (i) − µ(i))(b′′(δ)g′′(µ(i))/g′(µ(i)))

[b′′(δ)g′(µ(i))]2
x(i)x(i)

⊤

+
n∑

i=1

w(i)(y (i) − µ(i))(b′′′(δ)/b′′(δ))

[b′′(δ)g′(µ(i))]2
x(i)x(i)

⊤

E[−∇2ℓθ(δ, ϕ)] =
n∑

i=1

w(i)

b′′(δ)[g′(µ(i))]2
x(i)x(i)

⊤
= X⊤WX

Iteratively Reweighted Least Squares (IRLS) with weights w(i)

b′′(δ)[g′(µ(i))]2
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GENERALIZED LINEAR MODELS / 4

Fisher scoring:

θ(t+1) = θ(t) + (X⊤WX)−1X⊤WG(Y − µ)

= (X⊤WX)−1X⊤W
(

G(Y − µ) + Xθ(t)
)

For canonical link where η = δ (= g(µ) = x⊤θ), the second and third
term of Hessian cancel each other out and Hessian coincides with
Fisher information matrix since

∂η

∂δ
= 1 ⇒ b′′(δ) =

1
g′(µ(i))

⇒ b′′′(δ)

b′′(δ)
= − g′′(µ(i))

[g′(µ(i))]2
.

This will now be a convex problem with Fisher scoring equal to
Newton’s method.

There are also hybrid algorithms that start out with IRLS which is easier
to initialize, and switch over to Newton-Raphson after some iterations.
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