Optimization in Machine Learning

Second order methods Gauss-Newton

X \times \times

Learning goals

- **•** Least squares
- **•** Gauss-Newton
- **•** Levenberg-Marquardt

LEAST SQUARES PROBLEM

Consider the problem of minimizing a sum of squares

 $\min_{\theta} g(\theta),$

where

$$
g(\theta) = r(\theta)^{\top} r(\theta) = \sum_{i=1}^{n} r_i(\theta)^2
$$

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\end{array}
$$

and

$$
r: \mathbb{R}^d \to \mathbb{R}^n
$$

$$
\boldsymbol{\theta} \mapsto (r_1(\boldsymbol{\theta}), \dots, r_n(\boldsymbol{\theta}))^{\top}
$$

maps parameters θ to residuals $r(\theta)$

LEAST SQUARES PROBLEM / 2

Risk minimization with squared loss $L(y, f(x)) = (y - f(x))^2$ **Least squares regression:**

$$
\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right) = \sum_{i=1}^{n} \underbrace{\left(y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)^{2}}_{r_{i}(\boldsymbol{\theta})^{2}}
$$

- $f\left(\mathbf{x}^{(i)}\mid\theta\right)$ might be a function that is **nonlinear in** θ
- Residuals: $r_i = y^{(i)} f(\mathbf{x}^{(i)} | \boldsymbol{\theta})$

Example:

$$
\mathcal{D} = ((\mathbf{x}^{(i)}, y^{(i)}))_{i=1,...,5}
$$

= ((1,3), (2,7), (4, 12), (5, 13), (7, 20))

X \times \times

LEAST SQUARES PROBLEM / 3

Suppose, we suspect an *exponential* relationship between $x \in \mathbb{R}$ and *y*

$$
f(x | \theta) = \theta_1 \cdot \exp(\theta_2 \cdot x), \quad \theta_1, \theta_2 \in \mathbb{R}
$$

Residuals:

$$
r(\theta) = \begin{pmatrix} \theta_1 \exp(\theta_2 x^{(1)}) - y^{(1)} \\ \theta_1 \exp(\theta_2 x^{(2)}) - y^{(2)} \\ \theta_1 \exp(\theta_2 x^{(3)}) - y^{(3)} \\ \theta_1 \exp(\theta_2 x^{(4)}) - y^{(4)} \\ \theta_1 \exp(\theta_2 x^{(5)}) - y^{(5)} \end{pmatrix} = \begin{pmatrix} \theta_1 \exp(1\theta_2) - 3 \\ \theta_1 \exp(2\theta_2) - 7 \\ \theta_1 \exp(4\theta_2) - 12 \\ \theta_1 \exp(5\theta_2) - 13 \\ \theta_1 \exp(7\theta_2) - 20 \end{pmatrix}
$$

Least squares problem:

$$
\min_{\theta} g(\theta) = \min_{\theta} \sum_{i=1}^{5} \left(y^{(i)} - \theta_1 \exp \left(\theta_2 x^{(i)} \right) \right)^2
$$

X **XX**

NEWTON-RAPHSON IDEA

Approach: Calculate Newton-Raphson update direction by solving:

$$
\nabla^2 g(\boldsymbol{\theta}^{[t]}) \mathbf{d}^{[t]} = - \nabla g(\boldsymbol{\theta}^{[t]}).
$$

Gradient is calculated via chain rule

$$
\nabla g(\theta) = \nabla (r(\theta)^{\top} r(\theta)) = 2 \cdot J_r(\theta)^{\top} r(\theta),
$$

where $J_r(\theta)$ is Jacobian of $r(\theta)$.

In our example:

$$
J_r(\theta) = \begin{pmatrix} \frac{\partial r_1(\theta)}{\partial \theta_1} & \frac{\partial r_1(\theta)}{\partial \theta_2} \\ \frac{\partial r_2(\theta)}{\partial \theta_1} & \frac{\partial r_2(\theta)}{\partial \theta_2} \\ \vdots & \vdots \\ \frac{\partial r_5(\theta)}{\partial \theta_1} & \frac{\partial r_5(\theta)}{\partial \theta_2} \end{pmatrix} = \begin{pmatrix} \exp(\theta_2 x^{(1)}) & x^{(1)}\theta_1 \exp(\theta_2 x^{(1)}) \\ \exp(\theta_2 x^{(2)}) & x^{(2)}\theta_1 \exp(\theta_2 x^{(2)}) \\ \exp(\theta_2 x^{(3)}) & x^{(3)}\theta_1 \exp(\theta_2 x^{(3)}) \\ \exp(\theta_2 x^{(4)}) & x^{(4)}\theta_1 \exp(\theta_2 x^{(4)}) \\ \exp(\theta_2 x^{(5)}) & x^{(5)}\theta_1 \exp(\theta_2 x^{(5)}) \end{pmatrix}
$$

 $X \times$

NEWTON-RAPHSON IDEA / 2

Hessian of g , $H_g = (H_{ik})_{ik}$, is obtained via product rule:

$$
H_{jk} = 2\sum_{i=1}^{n} \left(\frac{\partial r_i}{\partial \theta_j} \frac{\partial r_i}{\partial \theta_k} + r_i \frac{\partial^2 r_i}{\partial \theta_j \partial \theta_k} \right)
$$

 $\overline{\mathbf{X}}$

But:

Main problem with Newton-Raphson:

Second derivatives can be computationally expensive.

GAUSS-NEWTON FOR LEAST SQUARES

Gauss-Newton approximates H_q by dropping its second order part:

$$
H_{jk} = 2 \sum_{i=1}^{n} \left(\frac{\partial r_i}{\partial \theta_j} \frac{\partial r_i}{\partial \theta_k} + r_i \frac{\partial^2 r_i}{\partial \theta_j \partial \theta_k} \right)
$$

$$
\approx 2 \sum_{i=1}^{n} \frac{\partial r_i}{\partial \theta_j} \frac{\partial r_i}{\partial \theta_k}
$$

$$
= 2J_r(\theta)^\top J_r(\theta)
$$

 \times \times

Note: We assume that

$$
\left|\frac{\partial r_i}{\partial \theta_j}\frac{\partial r_i}{\partial \theta_k}\right|\gg \left|r_i\frac{\partial^2 r_i}{\partial \theta_j \partial \theta_k}\right|.
$$

This assumption may be valid if:

- Residuals *rⁱ* are small in magnitude **or**
- Functions are only "mildly" nonlinear s.t. [∂] 2 *ri* ∂θ*j*∂θ*^k* is small.

GAUSS-NEWTON FOR LEAST SQUARES / 2

If *Jr*(θ) [⊤]*Jr*(θ) is invertible, Gauss-Newton update direction is

$$
\mathbf{d}^{[t]} = -\left[\nabla^2 g(\boldsymbol{\theta}^{[t]})\right]^{-1} \nabla g(\boldsymbol{\theta}^{[t]})
$$

\n
$$
\approx -\left[J_r(\boldsymbol{\theta}^{[t]})^\top J_r(\boldsymbol{\theta}^{[t]})\right]^{-1} J_r(\boldsymbol{\theta}^{[t]})^\top r(\boldsymbol{\theta})
$$

\n
$$
= -(\boldsymbol{J}_r^\top \boldsymbol{J}_r)^{-1} \boldsymbol{J}_r^\top r(\boldsymbol{\theta})
$$

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\end{array}
$$

Advantage:

Reduced computational complexity since no Hessian necessary.

Note: Gauss-Newton can also be derived by starting with

$$
\mathit{r}(\bm{\theta}) \approx \mathit{r}(\bm{\theta}^{[t]}) + \mathit{J}_{\mathit{r}}(\bm{\theta}^{[t]})^\top (\bm{\theta} - \bm{\theta}^{[t]}) = \widetilde{\mathit{r}}(\bm{\theta})
$$

and $\tilde{g}(\theta)=\tilde{r}(\theta)^\top \tilde{r}(\theta).$ Then, set $\nabla \tilde{g}(\theta)$ to zero.

LEVENBERG-MARQUARDT ALGORITHM

- **Problem:** Gauss-Newton may not decrease *g* in every iteration but may diverge, especially if starting point is far from minimum
- **Solution:** Choose step size $\alpha > 0$ s.t.

$$
\mathbf{x}^{[t+1]} = \mathbf{x}^{[t]} + \alpha \mathbf{d}^{[t]}
$$

decreases *g* (e.g., by satisfying Wolfe conditions)

 \bullet However, if α gets too small, an **alternative** method is the

Levenberg-Marquardt algorithm

$$
(J_r^{\top} J_r + \lambda D) \mathbf{d}^{[t]} = -J_r^{\top} r(\theta)
$$

- *D* is a positive diagonal matrix
- $\lambda=\lambda^{[t]}>0$ is the *Marquardt parameter* and chosen at each step

LEVENBERG-MARQUARDT ALGORITHM / 2

Interpretation: Levenberg-Marquardt *rotates* Gauss-Newton update directions towards direction of *steepest descent*

Let $D = I$ for simplicity. Then:

$$
\lambda \mathbf{d}^{[t]} = \lambda (J_r^{\top} J_r + \lambda I)^{-1} (-J_r^{\top} r(\theta))
$$

= $(I - J_r^{\top} J_r / \lambda + (J_r^{\top} J_r)^2 / \lambda^2 \mp \cdots) (-J_r^{\top} r(\theta))$
 $\rightarrow -J_r^{\top} r(\theta) = -\nabla g(\theta)/2$

$$
\text{for } \lambda \to \infty
$$

$$
\text{Note: } (\textbf{A}+\textbf{B})^{-1} = \sum_{k=0}^{\infty} (-\textbf{A}^{-1}\textbf{B})^k \textbf{A}^{-1} \text{ if } \|\textbf{A}^{-1}\textbf{B}\| < 1
$$

- Therefore: **d** [*t*] approaches direction of negative gradient of *g*
- Often: $D = \text{diag}(J_r^\top J_r)$ to get scale invariance (**Recall:** *J* ⊤ *r Jr* is positive semi-definite ⇒ non-negative diagonal)

