
Optimization in Machine Learning

Second order methods
Gauss-Newton

Learning goals
Least squares

Gauss-Newton

Levenberg-Marquardt



LEAST SQUARES PROBLEM

Consider the problem of minimizing a sum of squares

min
θ

g(θ),

where

g(θ) = r(θ)⊤r(θ) =
n∑

i=1

ri(θ)
2

and

r : Rd → Rn

θ 7→ (r1(θ), . . . , rn(θ))
⊤

maps parameters θ to residuals r(θ)

© Optimization in Machine Learning – 1 / 9



LEAST SQUARES PROBLEM / 2

Risk minimization with squared loss L (y , f (x)) = (y − f (x))2

Least squares regression:

Remp(θ) =
n∑

i=1

L
(

y (i), f
(

x(i) | θ
))

=
n∑

i=1

(
y (i) − f

(
x(i) | θ

))2

︸ ︷︷ ︸
ri(θ)2

f
(
x(i) | θ

)
might be a function that is nonlinear in θ

Residuals: ri = y (i) − f (x(i) |θ)

Example:

D =
((

x(i), y (i)
))

i=1,...,5

= ((1, 3), (2, 7), (4, 12), (5, 13), (7, 20))

© Optimization in Machine Learning – 2 / 9



LEAST SQUARES PROBLEM / 3

Suppose, we suspect an exponential relationship between x ∈ R and y

f (x |θ) = θ1 · exp(θ2 · x), θ1, θ2 ∈ R

Residuals:

r(θ) =


θ1 exp(θ2x (1))− y (1)

θ1 exp(θ2x (2))− y (2)

θ1 exp(θ2x (3))− y (3)

θ1 exp(θ2x (4))− y (4)

θ1 exp(θ2x (5))− y (5)

 =


θ1 exp(1θ2)− 3
θ1 exp(2θ2)− 7
θ1 exp(4θ2)− 12
θ1 exp(5θ2)− 13
θ1 exp(7θ2)− 20


Least squares problem:

min
θ

g(θ) = min
θ

5∑
i=1

(
y (i) − θ1 exp

(
θ2x(i)

))2

© Optimization in Machine Learning – 3 / 9



NEWTON-RAPHSON IDEA

Approach: Calculate Newton-Raphson update direction by solving:

∇2g(θ[t])d[t] = −∇g(θ[t]).

Gradient is calculated via chain rule

∇g(θ) = ∇(r(θ)⊤r(θ)) = 2 · Jr (θ)
⊤r(θ),

where Jr (θ) is Jacobian of r(θ).

In our example:

Jr (θ) =


∂r1(θ)
∂θ1

∂r1(θ)
∂θ2

∂r2(θ)
∂θ1

∂r2(θ)
∂θ2

...
...

∂r5(θ)
∂θ1

∂r5(θ)
∂θ2

 =


exp(θ2x (1)) x (1)θ1 exp(θ2x (1))

exp(θ2x (2)) x (2)θ1 exp(θ2x (2))

exp(θ2x (3)) x (3)θ1 exp(θ2x (3))

exp(θ2x (4)) x (4)θ1 exp(θ2x (4))

exp(θ2x (5)) x (5)θ1 exp(θ2x (5))



© Optimization in Machine Learning – 4 / 9



NEWTON-RAPHSON IDEA / 2

Hessian of g, Hg = (Hjk)jk , is obtained via product rule:

Hjk = 2
n∑

i=1

(
∂ri

∂θj

∂ri

∂θk
+ ri

∂2ri

∂θj∂θk

)
But:

Main problem with Newton-Raphson:
Second derivatives can be computationally expensive.

© Optimization in Machine Learning – 5 / 9



GAUSS-NEWTON FOR LEAST SQUARES

Gauss-Newton approximates Hg by dropping its second order part:

Hjk = 2
n∑

i=1

(
∂ri

∂θj

∂ri

∂θk
+ ri

∂2ri

∂θj∂θk

)

≈ 2
n∑

i=1

∂ri

∂θj

∂ri

∂θk

= 2Jr (θ)
⊤Jr (θ)

Note: We assume that ∣∣∣∣ ∂ri

∂θj

∂ri

∂θk

∣∣∣∣ ≫ ∣∣∣∣ri
∂2ri

∂θj∂θk

∣∣∣∣ .
This assumption may be valid if:

Residuals ri are small in magnitude or

Functions are only “mildly” nonlinear s.t. ∂2ri
∂θj∂θk

is small.

© Optimization in Machine Learning – 6 / 9



GAUSS-NEWTON FOR LEAST SQUARES / 2

If Jr (θ)
⊤Jr (θ) is invertible, Gauss-Newton update direction is

d[t] = −
[
∇2g(θ[t])

]−1
∇g(θ[t])

≈ −
[
Jr (θ

[t])⊤Jr (θ
[t])

]−1
Jr (θ

[t])⊤r(θ)

= −(J⊤
r Jr )

−1J⊤
r r(θ)

Advantage:

Reduced computational complexity since no Hessian necessary.

Note: Gauss-Newton can also be derived by starting with

r(θ) ≈ r(θ[t]) + Jr (θ
[t])⊤(θ − θ[t]) = r̃(θ)

and g̃(θ) = r̃(θ)⊤r̃(θ). Then, set ∇g̃(θ) to zero.

© Optimization in Machine Learning – 7 / 9



LEVENBERG-MARQUARDT ALGORITHM

Problem: Gauss-Newton may not decrease g in every iteration but
may diverge, especially if starting point is far from minimum

Solution: Choose step size α > 0 s.t.

x[t+1] = x[t] + αd[t]

decreases g (e.g., by satisfying Wolfe conditions)

However, if α gets too small, an alternative method is the

Levenberg-Marquardt algorithm

(J⊤
r Jr + λD)d[t] = −J⊤

r r(θ)

D is a positive diagonal matrix

λ = λ[t] > 0 is the Marquardt parameter and chosen at each step

© Optimization in Machine Learning – 8 / 9



LEVENBERG-MARQUARDT ALGORITHM / 2

Interpretation: Levenberg-Marquardt rotates Gauss-Newton
update directions towards direction of steepest descent

Let D = I for simplicity. Then:

λd[t] = λ(J⊤
r Jr + λI)−1(−J⊤

r r(θ))

= (I − J⊤
r Jr/λ+ (J⊤

r Jr )
2/λ2 ∓ · · · )(−J⊤

r r(θ))

→ −J⊤
r r(θ) = −∇g(θ)/2

for λ → ∞

Note: (A + B)−1 =
∑∞

k=0(−A−1B)k A−1 if ∥A−1B∥ < 1

Therefore: d[t] approaches direction of negative gradient of g

Often: D = diag(J⊤
r Jr ) to get scale invariance

(Recall: J⊤
r Jr is positive semi-definite ⇒ non-negative diagonal)

© Optimization in Machine Learning – 9 / 9


