Optimization in Machine Learning

Second order methods
Gauss-Newton

Learning goals
@ Least squares
@ Gauss-Newton
@ Levenberg-Marquardt
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LEAST SQUARES PROBLEM
Consider the problem of minimizing a sum of squares
min g(8).

where

and

r:RY = R"
01— (r1(0),...,r(0)"

maps parameters 6 to residuals r(6)
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LEAST SQUARES PROBLEM /2

Risk minimization with squared loss L (y, f(x)) = (y — f(x))? X

Least squares regression:
Rl $51 (01 (0016)) - 35 (01 1010)) X X

ri(0)?

o (x() | ) might be a function that is nonlinear in 6
@ Residuals: r; = y{) — f(x()| )

Example: .
_ OO s
po= (()), i
= ((1,8),(2,7),(4,12),(5,13),(7,20)) 1

2 4 6 8
X
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LEAST SQUARES PROBLEM /3

Suppose, we suspect an exponential relationship between x € R and y

f(x]6) =01 -exp(b2-x), 01,60 €R

Residuals:
0 exp(Gx) — yM 01 exp(162) — 3
01 exp(0,x®)) — y®@ 01 exp(262) — 7
r(0) = | 01exp(02x¥) — y® | = | 01 exp(462) — 12
6 exp(Gax@) — y@ 01 exp(562) — 13
0 exp(0x®)) — y©® 61 exp(762) — 20

Least squares problem:

5

mgin 9(0) = m(;n Z (y(i) — 01 exp (92x(i)>)2

i=1

Optimization in Machine Learning — 3/9

X X



NEWTON-RAPHSON IDEA
Approach: Calculate Newton-Raphson update direction by solving:
V2g(ei)all = —vg(oll).
Gradient is calculated via chain rule
Vg(6) = V(r(6)"r(6)) = 2- J(6) " 1(6),
where J,(0) is Jacobian of r(8).

In our example:

Bg(sf) age(f) exp(02xM)  x(10; exp(B2xM)
20(6)  2(0) exp(2x?)  x®0; exp(02x1?)
Jr(0) = . 2ol = | exp(82xPF)  x®0; exp(62x)
: : exp(02x®)  xB0; exp(h2xP)
or5(6)  Ors(6
%56 5 exp(62x¥) X0, exp(62x®)

Optimization in Machine Learning — 4/9

X X



NEWTON-RAPHSON IDEA /2

Hessian of g, Hg = (Hj«)jx, is obtained via product rule:

n
_ or or; 92r;
He=23 (ae,- a6, " ae,aek>

i=1

But:

Main problem with Newton-Raphson:
Second derivatives can be computationally expensive.
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GAUSS-NEWTON FOR LEAST SQUARES

Gauss-Newton approximates Hgy by dropping its second order part:

or; ar, 92r;
2 -
Z (aa BT ae,@9k>

ori or;
~ 2
Z 00; 06

= 2J,(0)TJ,(0)
Note: We assume that
@ 8!’,‘ . 821','
00; 00 ’89,-80k '

This assumption may be valid if:

@ Residuals r; are small in magnitude or

H “ H ” H 2p; H
@ Functions are only “mildly” nonlinear s.t. ag,-arbk is small.
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GAUSS-NEWTON FOR LEAST SQUARES /2

If J,(0) " J,(0) is invertible, Gauss-Newton update direction is X
—1
dll = — |[v2g(6l)|  vg(ol?) X
—1
~ = [J,(elfl)TJ,(elfl)} J(610)T r(0) X X

= —(4 )7 r(0)

Advantage:

Reduced computational complexity since no Hessian necessary.

Note: Gauss-Newton can also be derived by starting with
r(0) ~ r(61) + ()T (6 — 1) = 7(6)

and g(0) = 7(0) "7(0). Then, set Vg(8) to zero.
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LEVENBERG-MARQUARDT ALGORITHM

@ Problem: Gauss-Newton may not decrease g in every iteration but
may diverge, especially if starting point is far from minimum

@ Solution: Choose step size o > 0 s.t.
xltH1] = xlf 1 qqlf

decreases g (e.g., by satisfying Wolfe conditions)
@ However, if a gets too small, an alternative method is the

Levenberg-Marquardt algorithm

(4, Jr + AD)d = —y T r(6)

@ Dis a positive diagonal matrix
e A= \M>0isthe Marquardt parameter and chosen at each step
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LEVENBERG-MARQUARDT ALGORITHM /2

@ Interpretation: Levenberg-Marquardt rotates Gauss-Newton
update directions towards direction of steepest descent

Let D = [ for simplicity. Then:
A = AU g+ AT (= r(8))
= (1= /A + (PN F ) (=4 1(0))
— —J, r(0) = —Vg(0)/2
for A = oo

Note: (A+B)~' => "2 ((—A~'B)*A~"if [A~"B|| < 1

@ Therefore: dlf] approaches direction of negative gradient of g
@ Often: D = diag(J, J;) to get scale invariance
(Recall: J,TJ, is positive semi-definite = non-negative diagonal)
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