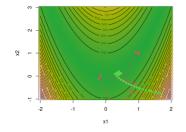
Optimization in Machine Learning

Second order methods Quasi-Newton



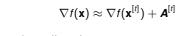
Learning goals

- Newton-Raphson vs. Quasi-Newton
- SR1
- BFGS

QUASI-NEWTON: IDEA

Start point of **QN method** is (as with NR) a Taylor approximation of the gradient, except that H is replaced by a **pd** matrix $A^{[t]}$:

$$abla f(\mathbf{x}) pprox
abla f(\mathbf{x}^{[t]}) +
abla^2 f(\mathbf{x}^{[t]})(\mathbf{x} - \mathbf{x}^{[t]}) = \mathbf{0}$$
 NR
$$abla f(\mathbf{x}) pprox
abla f(\mathbf{x}^{[t]}) + \mathbf{A}^{[t]} \qquad (\mathbf{x} - \mathbf{x}^{[t]}) = \mathbf{0}$$
 QN



$$(\mathbf{x} - \mathbf{x}^{[t]}) = \mathbf{0}$$
 QN

The update direction:

$$oldsymbol{d}^{[t]} = -
abla^2 f(\mathbf{x}^{[t]})^{-1}
abla f(\mathbf{x}^{[t]}) \qquad \text{NR}$$
 $oldsymbol{d}^{[t]} = -(oldsymbol{A}^{[t]})^{-1} \qquad
abla f(\mathbf{x}^{[t]}) \qquad \text{QN}$

QUASI-NEWTON: IDEA / 2

- Select a starting point $\mathbf{x}^{[0]}$ and initialize pd matrix $\mathbf{A}^{[0]}$ (can also be a diagonal matrix a very rough approximation of Hessian).
- Calculate update direction by solving

$$oldsymbol{A}^{[t]}oldsymbol{d}^{[t]} = -
abla f(\mathbf{x}^{[t]})$$

and set $\mathbf{x}^{[t+1]} = \mathbf{x}^{[t]} + \alpha^{[t]} \mathbf{d}^{[t]}$ (Step size through backtracking)

Solution Calculate an efficient update $\mathbf{A}^{[t+1]}$, based on $\mathbf{x}^{[t]}$, $\mathbf{x}^{[t+1]}$, $\nabla f(\mathbf{x}^{[t]})$, $\nabla f(\mathbf{x}^{[t+1]})$ and $\mathbf{A}^{[t]}$.

QUASI-NEWTON: IDEA / 3

Usually the matrices $\mathbf{A}^{[t]}$ are calculated recursively by performing an additive update

$$\mathbf{A}^{[t+1]} = \mathbf{A}^{[t]} + \mathbf{B}^{[t]}.$$

How $\mathbf{B}^{[t]}$ is constructed is shown on the next slides. **Requirements** for the matrix sequence $\mathbf{A}^{[t]}$:

- **1** Symmetric pd, so that $\mathbf{d}^{[t]}$ are descent directions.
- 2 Low computational effort when solving LES

$$\mathbf{A}^{[t]}\mathbf{d}^{[t]} = -\nabla f(\mathbf{x}^{[t]})$$

3 Good approximation of Hessian: The "modified" Taylor series for $\nabla f(\mathbf{x})$ (especially for $t \to \infty$) should provide a good approximation

$$abla f(\mathbf{x}) pprox
abla f(\mathbf{x}^{[t]}) + \mathbf{A}^{[t]}(\mathbf{x} - \mathbf{x}^{[t]})$$

SYMMETRIC RANK 1 UPDATE (SR1)

Simplest approach: symmetric rank 1 updates (SR1) of form

$$oldsymbol{A}^{[t+1]} \leftarrow oldsymbol{A}^{[t]} + oldsymbol{B}^{[t]} = oldsymbol{A}^{[t]} + eta oldsymbol{u}^{[t]} (oldsymbol{u}^{[t]})^{ op}$$

with appropriate vector $\mathbf{\textit{u}}^{[t]} \in \mathbb{R}^{n}$, $\beta \in \mathbb{R}$.

SYMMETRIC RANK 1 UPDATE (SR1) / 2

Choice of $u^{[t]}$:

Vectors should be chosen so that the "modified" Taylor series corresponds to the gradient:

$$\nabla f(\mathbf{x}) \stackrel{!}{=} \nabla f(\mathbf{x}^{[t+1]}) + \mathbf{A}^{[t+1]}(\mathbf{x} - \mathbf{x}^{[t+1]})$$

$$\nabla f(\mathbf{x}) = \nabla f(\mathbf{x}^{[t+1]}) + \left(\mathbf{A}^{[t]} + \beta \mathbf{u}^{[t]}(\mathbf{u}^{[t]})^{\top}\right) \underbrace{(\mathbf{x} - \mathbf{x}^{[t+1]})}_{:=\mathbf{s}^{[t+1]}}$$

$$\underbrace{\nabla f(\mathbf{x}) - \nabla f(\mathbf{x}^{[t+1]})}_{\mathbf{y}^{[t+1]}} = \left(\mathbf{A}^{[t]} + \beta \mathbf{u}^{[t]}(\mathbf{u}^{[t]})^{\top}\right) \mathbf{s}^{[t+1]}$$

$$\mathbf{y}^{[t+1]} - \mathbf{A}^{[t]} \mathbf{s}^{[t+1]} = \left(\beta (\mathbf{u}^{[t]})^{\top} \mathbf{s}^{[t+1]}\right) \mathbf{u}^{[t]}$$

For $\boldsymbol{u}^{[t]} = \boldsymbol{y}^{[t+1]} - \boldsymbol{A}^{[t]} \boldsymbol{s}^{[t+1]}$ and $\beta = \frac{1}{\left(\boldsymbol{y}^{[t+1]} - \boldsymbol{A}^{[t]} \boldsymbol{s}^{[t+1]}\right)^{\top} \boldsymbol{s}^{[t+1]}}$ the equation is satisfied.

SYMMETRIC RANK 1 UPDATE (SR1) / 3

Advantage

- Provides a sequence of symmetric pd matrices
- Matrices can be inverted efficiently and stable using Sherman-Morrison:

$$(\mathbf{A} + \beta \mathbf{u} \mathbf{u}^{\mathsf{T}})^{-1} = \mathbf{A} + \beta \frac{\mathbf{u} \mathbf{u}^{\mathsf{T}}}{1 + \beta \mathbf{u}^{\mathsf{T}} \mathbf{u}}.$$

• The constructed matrices are not necessarily pd, and the update directions $\mathbf{d}^{[t]}$ are therefore not necessarily descent directions

BFGS ALGORITHM

Instead of Rank 1 updates, the **BFGS** procedure (published simultaneously in 1970 by Broyden, Fletcher, Goldfarb and Shanno) uses rank 2 modifications of the form

$$\mathbf{A}^{[t]} + \beta \mathbf{u}^{[t]} (\mathbf{u}^{[t]})^{\top} + \beta \mathbf{v}^{[t]} (\mathbf{v}^{[t]})^{\top}$$

with
$$\mathbf{s}^{[t]} := \mathbf{x}^{[t+1]} - \mathbf{x}^{[t]}$$

$$\bullet \ \boldsymbol{u}^{[t]} = \nabla f(\boldsymbol{x}^{[t+1]}) - \nabla f(\boldsymbol{x}^{[t]})$$

$$oldsymbol{v}^{[t]} = oldsymbol{A}^{[t]} oldsymbol{s}^{[t]}$$

$$\bullet \ \beta = \frac{1}{(\boldsymbol{u}^{[t]})^{\top}(\boldsymbol{s}^{[t]})}$$

$$\bullet \ \beta = -\frac{1}{(\boldsymbol{s}^{[t]})^{\top} \boldsymbol{A}^{[t]} \boldsymbol{s}^{[t]}}$$

The resulting matrices $\mathbf{A}^{[t]}$ are positive definite and the corresponding quasi-newton update directions $d^{[t]}$ are actual descent directions.

Optimization in Machine Learning - 7 / 7

