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QUASI-NEWTON: IDEA

Start point of QN method is (as with NR) a Taylor approximation of the
gradient, except that H is replaced by a pd matrix A[t]:

∇f (x) ≈ ∇f (x[t]) +∇2f (x[t])(x − x[t]) = 0 NR

∇f (x) ≈ ∇f (x[t]) + A[t] (x − x[t]) = 0 QN

The update direction:

d [t] = −∇2f (x[t])−1∇f (x[t]) NR

d [t] = −(A[t])−1 ∇f (x[t]) QN
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QUASI-NEWTON: IDEA / 2

1 Select a starting point x[0] and initialize pd matrix A[0] (can also be
a diagonal matrix - a very rough approximation of Hessian).

2 Calculate update direction by solving

A[t]d [t] = −∇f (x[t])

and set x [t+1] = x [t] + α[t]d [t] (Step size through backtracking)
3 Calculate an efficient update A[t+1],

based on x[t], x[t+1], ∇f (x[t]), ∇f (x[t+1]) and A[t].
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QUASI-NEWTON: IDEA / 3

Usually the matrices A[t] are calculated recursively by performing an
additive update

A[t+1] = A[t] + B[t].

How B[t] is constructed is shown on the next slides.
Requirements for the matrix sequence A[t]:

1 Symmetric pd, so that d [t] are descent directions.
2 Low computational effort when solving LES

A[t]d [t] = −∇f (x[t])

3 Good approximation of Hessian: The “modified” Taylor series for
∇f (x) (especially for t →∞) should provide a good approximation

∇f (x) ≈ ∇f (x[t]) + A[t](x− x[t])
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SYMMETRIC RANK 1 UPDATE (SR1)

Simplest approach: symmetric rank 1 updates (SR1) of form

A[t+1] ← A[t] + B[t] = A[t] + βu[t](u[t])⊤

with appropriate vector u[t] ∈ Rn, β ∈ R.

© Optimization in Machine Learning – 4 / 7



SYMMETRIC RANK 1 UPDATE (SR1) / 2

Choice of u[t]:
Vectors should be chosen so that the “modified” Taylor series
corresponds to the gradient:

∇f (x) !
= ∇f (x[t+1]) + A[t+1](x− x[t+1])

∇f (x) = ∇f (x[t+1]) +
(

A[t] + βu[t](u[t])⊤
)
(x− x[t+1])︸ ︷︷ ︸

:=s[t+1]

∇f (x)−∇f (x[t+1])︸ ︷︷ ︸
y [t+1]

=
(

A[t] + βu[t](u[t])⊤
)

s[t+1]

y [t+1] − A[t]s[t+1] =
(
β(u[t])⊤s[t+1]

)
u[t]

For u[t] = y [t+1] −A[t]s[t+1] and β = 1

(y [t+1]−A[t]s[t+1])
⊤

s[t+1]
the equation

is satisfied.
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SYMMETRIC RANK 1 UPDATE (SR1) / 3

Advantage

Provides a sequence of symmetric pd matrices

Matrices can be inverted efficiently and stable using
Sherman-Morrison:

(A + βuu⊤)−1 = A + β
uu⊤

1 + βu⊤u
.

Disadvantage

The constructed matrices are not necessarily pd, and the update
directions d [t] are therefore not necessarily descent directions
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BFGS ALGORITHM

Instead of Rank 1 updates, the BFGS procedure (published
simultaneously in 1970 by Broyden, Fletcher, Goldfarb and Shanno)
uses rank 2 modifications of the form

A[t] + βu[t](u[t])⊤ + βv [t](v [t])⊤

with s[t] := x [t+1] − x [t]

u[t] = ∇f (x [t+1])−∇f (x [t])

v [t] = A[t]s[t]

β = 1
(u[t])⊤(s[t])

β = − 1
(s[t])⊤A[t]s[t]

The resulting matrices A[t] are positive definite and the corresponding
quasi-newton update directions d [t] are actual descent directions.
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