Optimization in Machine Learning

Second order methods Newton-Raphson

X \times \times

Learning goals

- Newton-Raphson
- **•** Limitations

FROM FIRST TO SECOND ORDER METHODS

So far: **First order methods**

⇒ *Gradient* information, i.e., first derivatives

Now: **Second order methods**

⇒ *Hessian* information, i.e., second derivatives

 \times \times

NEWTON-RAPHSON

Assumption: $f \in C^2$

Aim: Find stationary point \mathbf{x}^* , i.e., $\nabla f(\mathbf{x}^*) = \mathbf{0}$

Idea: Find root of first order Taylor approximation of $\nabla f(\mathbf{x})$:

$$
\nabla f(\mathbf{x}) \approx \nabla f(\mathbf{x}^{[t]}) + \nabla^2 f(\mathbf{x}^{[t]})(\mathbf{x} - \mathbf{x}^{[t]}) = \mathbf{0}
$$

$$
\nabla^2 f(\mathbf{x}^{[t]})(\mathbf{x} - \mathbf{x}^{[t]}) = -\nabla f(\mathbf{x}^{[t]})
$$

$$
\mathbf{x}^{[t+1]} = \mathbf{x}^{[t]} - (\nabla^2 f(\mathbf{x}^{[t]}))^{-1} \nabla f(\mathbf{x}^{[t]})
$$

 \times \times

Update scheme:

$$
\mathbf{x}^{[t+1]} = \mathbf{x}^{[t]} + \mathbf{d}^{[t]}
$$
 with
$$
\mathbf{d}^{[t]} = -\left(\nabla^2 f(\mathbf{x}^{[t]})\right)^{-1} \nabla f(\mathbf{x}^{[t]})
$$

NEWTON-RAPHSON / 2

Note: In practice, we get **d** [*t*] by solving the linear system

$$
\nabla^2 f(\mathbf{x}^{[t]}) \mathbf{d}^{[t]} = - \nabla f(\mathbf{x}^{[t]})
$$

with direct (matrix decompositions) or iterative methods.

Relaxed/Damped Newton-Raphson: Use step size α > 0 with

 $\mathbf{x}^{[t+1]} = \mathbf{x}^{[t]} + \alpha \mathbf{d}^{[t]}$

to satisfy Wolfe conditions (or just Armijo rule)

 $\overline{\mathsf{x}\,\mathsf{x}}$

ANALYTICAL EXAMPLE WITH QUADRATIC FORM

$$
f(x_1, x_2) = x_1^2 + \frac{x_2^2}{2}
$$

Update direction: $\mathbf{d}^{[t]} = -(\nabla^2 f(x_1^{[t]}, x_2^{[t]}))^{-1} \nabla f(x_1^{[t]}, x_2^{[t]})$

$$
\nabla f(x_1, x_2) = \begin{pmatrix} 2x_1 \\ x_2 \end{pmatrix}, \quad \nabla^2 f(x_1, x_2) = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}
$$

X $\times\overline{\times}$

First step:

$$
\begin{pmatrix} x_1^{[1]} \\ x_2^{[1]} \end{pmatrix} = \begin{pmatrix} x_1^{[0]} \\ x_2^{[0]} \end{pmatrix} + \textbf{d}^{[0]} = \begin{pmatrix} x_1^{[0]} \\ x_2^{[0]} \end{pmatrix} - \begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2x_1^{[0]} \\ x_2^{[0]} \end{pmatrix} \\ = \begin{pmatrix} x_1^{[0]} \\ x_2^{[0]} \end{pmatrix} + \begin{pmatrix} -x_1^{[0]} \\ -x_2^{[0]} \end{pmatrix} = \textbf{0}
$$

Note: Newton-Raphson only needs one iteration for quadratic forms

NEWTON-RAPHSON VS. GD ON BRANIN FUNCTION

X **XX**

Red: Newton-Raphson. Green: Gradient descent. Newton-Raphson has much better convergence speed here.

DISCUSSION

Advantage:

For *f* sufficiently smooth:

Newton-Raphson converges *locally* quadratically (i.e., for starting points close enough to stationary point) \times \times

Disadvantage:

• For "bad" starting points:

Newton-Raphson may diverge

LIMITATIONS

Problem 1: In general, $\mathbf{d}^{[t]}$ is not a descent direction

 $\times\overline{\times}$

But: If Hessian is positive definite, **d** [*t*] is descent direction:

$$
\nabla f(\boldsymbol{x}^{[t]})^\top \boldsymbol{d}^{[t]} = - \nabla f(\boldsymbol{x}^{[t]})^\top \left(\nabla^2 f(\boldsymbol{x}^{[t]}) \right)^{-1} \nabla f(\boldsymbol{x}^{[t]}) < 0
$$

Near minimum, Hessian is positive definite. For initial steps, Hessian is often not positive definite and Newton-Raphson may give non-descending update directions

LIMITATIONS / 2

Problem 2: Hessian can be **computationally expensive** to calculate, since descent direction **d** [*t*] is the solution of the linear system

 $\nabla^2 f(\mathbf{x}^{[t]}) \mathbf{d}^{[t]} = -\nabla f(\mathbf{x}^{[t]}).$

 \times \times

Aim: Find quasi-second order methods not relying on exact Hessians

- Quasi-Newton method
- Gauss-Newton algorithm (for least squares)