Optimization in Machine Learning

Second order methods
Newton-Raphson

Learning goals
@ Newton-Raphson
@ Limitations
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FROM FIRST TO SECOND ORDER METHODS

@ So far: First order methods
= Gradient information, i.e., first derivatives

@ Now: Second order methods
= Hessian information, i.e., second derivatives
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NEWTON-RAPHSON

Assumption: f € C?
Aim: Find stationary point x*, i.e., Vf(x*) =0
Idea: Find root of first order Taylor approximation of Vf(x):
Vi(x) ~ VA1) + v2#(x)(x — xIT) = 0
v2f(xl1) (x — xl1) = —vf(x[1)
—1
[T =yl — (sz(x[t])> V(!
Update scheme:
xl+11 — xli 4 gl
with dlfl = — (V27(xI1)) ™" v(xll)
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NEWTON-RAPHSON /2

Note: In practice, we get d[f! by solving the linear system
v2f(xhdll = —vr(x[1)

with direct (matrix decompositions) or iterative methods.

Relaxed/Damped Newton-Raphson: Use step size a > 0 with
x[t1 = xlf 4 gl

to satisfy Wolfe conditions (or just Armijo rule)
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ANALYTICAL EXAMPLE WITH QUADRATIC FORM

2, X
fla, ) = x4+ =

1
Update direction: dlfl = — (sz(xy],xg]» Vf(x}t], xzm)

2x 2 0
Vf(X1,X2): <X21) y sz(X1,X2): <O 1)
First step:

x1[1] _ x1[0] L dlol— x1[0] _(1/20 2x1[O]
X2[1] - X2[0] N X2[0] 0 1 X2[0]
[0] [0]
S —X
= + —0
<X£°]> (—x2[0]>

Note: Newton-Raphson only needs one iteration for quadratic forms
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NEWTON-RAPHSON VS. GD ON BRANIN

FUNCTION
0 0 X
X O
0 X X

Steps x1

Red: Newton-Raphson. Green: Gradient descent.
Newton-Raphson has much better convergence speed here.
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DISCUSSION

Advantage:
@ For f sufficiently smooth:

Newton-Raphson converges locally quadratically
(i.e., for starting points close enough to stationary point)

Disadvantage:
@ For “bad” starting points:

Newton-Raphson may diverge
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LIMITATIONS
Problem 1: In general, d!l is not a descent direction O 0 X

x1

But: If Hessian is positive definite, d[fl is descent direction:

Vi) T = i) (VAr(x)) T wae) <o

Near minimum, Hessian is positive definite. For initial steps, Hessian is often not
positive definite and Newton-Raphson may give non-descending update directions
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LIMITATIONS /2

Problem 2: Hessian can be computationally expensive to calculate,
since descent direction d!l is the solution of the linear system

V2f(xIh)dll = —wr(x[).

Aim: Find quasi-second order methods not relying on exact Hessians
@ Quasi-Newton method
@ Gauss-Newton algorithm (for least squares)
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