
Optimization in Machine Learning

Second order methods
Newton-Raphson

Learning goals
Newton-Raphson

Limitations



FROM FIRST TO SECOND ORDER METHODS

So far: First order methods
⇒ Gradient information, i.e., first derivatives

Now: Second order methods
⇒ Hessian information, i.e., second derivatives

© Optimization in Machine Learning – 1 / 8



NEWTON-RAPHSON

Assumption: f ∈ C2

Aim: Find stationary point x∗, i.e., ∇f (x∗) = 0

Idea: Find root of first order Taylor approximation of ∇f (x):

∇f (x) ≈ ∇f (x[t]) +∇2f (x[t])(x − x[t]) = 0

∇2f (x[t])(x − x[t]) = −∇f (x[t])

x[t+1] = x[t] −
(
∇2f (x[t])

)−1
∇f (x[t])

Update scheme:
x[t+1] = x[t] + d[t]

with d[t] = −
(
∇2f (x[t])

)−1 ∇f (x[t])

© Optimization in Machine Learning – 2 / 8



NEWTON-RAPHSON / 2

Note: In practice, we get d[t] by solving the linear system

∇2f (x[t])d[t] = −∇f (x[t])

with direct (matrix decompositions) or iterative methods.

Relaxed/Damped Newton-Raphson: Use step size α > 0 with

x[t+1] = x[t] + αd[t]

to satisfy Wolfe conditions (or just Armijo rule)

© Optimization in Machine Learning – 3 / 8



ANALYTICAL EXAMPLE WITH QUADRATIC FORM

f (x1, x2) = x2
1 +

x2
2

2

Update direction: d[t] = −
(
∇2f (x [t]

1 , x [t]
2 )
)−1

∇f (x [t]
1 , x [t]

2 )

∇f (x1, x2) =

(
2x1

x2

)
, ∇2f (x1, x2) =

(
2 0
0 1

)
First step:(

x [1]
1

x [1]
2

)
=

(
x [0]

1

x [0]
2

)
+ d[0] =

(
x [0]

1

x [0]
2

)
−
(

1/2 0
0 1

)(
2x [0]

1

x [0]
2

)

=

(
x [0]

1

x [0]
2

)
+

(
−x [0]

1

−x [0]
2

)
= 0

Note: Newton-Raphson only needs one iteration for quadratic forms

© Optimization in Machine Learning – 4 / 8



NEWTON-RAPHSON VS. GD ON BRANIN
FUNCTION

Red: Newton-Raphson. Green: Gradient descent.
Newton-Raphson has much better convergence speed here.

© Optimization in Machine Learning – 5 / 8



DISCUSSION

Advantage:

For f sufficiently smooth:

Newton-Raphson converges locally quadratically
(i.e., for starting points close enough to stationary point)

Disadvantage:

For “bad” starting points:

Newton-Raphson may diverge

© Optimization in Machine Learning – 6 / 8



LIMITATIONS

Problem 1: In general, d[t] is not a descent direction

But: If Hessian is positive definite, d[t] is descent direction:

∇f (x[t])⊤d[t] = −∇f (x[t])⊤
(
∇2f (x[t])

)−1
∇f (x[t]) < 0

Near minimum, Hessian is positive definite. For initial steps, Hessian is often not

positive definite and Newton-Raphson may give non-descending update directions

© Optimization in Machine Learning – 7 / 8



LIMITATIONS / 2

Problem 2: Hessian can be computationally expensive to calculate,
since descent direction d[t] is the solution of the linear system

∇2f (x[t])d[t] = −∇f (x[t]).

Aim: Find quasi-second order methods not relying on exact Hessians

Quasi-Newton method

Gauss-Newton algorithm (for least squares)

© Optimization in Machine Learning – 8 / 8


