Optimization in Machine Learning

First order methods SGD

Learning goals

- \bullet SGD
- Stochasticity
- **•** Convergence
- Batch size

STOCHASTIC GRADIENT DESCENT

NB: We use *g* instead of *f* as objective, bc. *f* is used as model in ML.

 $q: \mathbb{R}^d \to \mathbb{R}$ objective, *g* **average over functions**:

$$
g(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} g_i(\mathbf{x}), \qquad g \text{ and } g_i \text{ smooth}
$$

Stochastic gradient descent (SGD) approximates the gradient

$$
\nabla_{\mathbf{x}} g(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{x}} g_i(\mathbf{x}) \quad := \quad \mathbf{d} \quad \text{by}
$$
\n
$$
\frac{1}{|J|} \sum_{i \in J} \nabla_{\mathbf{x}} g_i(\mathbf{x}) \quad := \quad \hat{\mathbf{d}},
$$

with random subset *J* ⊂ {1, 2, ..., *n*} of gradients called **mini-batch**. This is done e.g. when computing the true gradient is **expensive**.

STOCHASTIC GRADIENT DESCENT / 2

Algorithm Basic SGD pseudo code

- 1: Initialize $\mathbf{x}^{[0]}$, $t=0$
- 2: **while** stopping criterion not met **do**
- 3: Randomly shuffle indices and partition into minibatches J_1, \ldots, J_K of size m
- 4: **for** *k* ∈ {1, ..., *K*} **do**
- 5: $t \leftarrow t + 1$
- 6: Compute gradient estimate with J_k : $\hat{\mathbf{d}}^{[t]} \leftarrow \frac{1}{m} \sum_{i \in J_k} \nabla_{\mathbf{x}} g_i(\mathbf{x}^{[t-1]})$
- 7: Apply update: $\mathbf{x}^{[t]} \leftarrow \mathbf{x}^{[t-1]} \alpha \cdot \hat{\mathbf{d}}^{[t]}$
- 8: **end for**
- 9: **end while**
	- **Instead of drawing batches randomly we might want to go through the** g_i sequentially (unless *gⁱ* are sorted in any way)
	- Updates are computed faster, but also more stochastic:
		- In the simplest case, batch-size $m := |J_k|$ is set to $m = 1$
		- If *n* is a billion, computation of update is a billion times faster
		- **But** (later): Convergence rates suffer from stochasticity!

SGD IN ML

In ML, we perform ERM:

$$
\mathcal{R}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} | \boldsymbol{\theta}\right)\right)}_{g_i(\boldsymbol{\theta})}
$$

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\circ \\
\hline\n\circ \\
\hline\n\circ\n\end{array}
$$

 \bullet for a data set

$$
\mathcal{D} = \left(\left(\boldsymbol{x}^{(1)}, y^{(1)} \right), \ldots, \left(\boldsymbol{x}^{(n)}, y^{(n)} \right) \right)
$$

- a loss function $L\left(y, f(\mathbf{x})\right)$, e.g., L2 loss $L\left(y, f(\mathbf{x})\right) = (y f(\mathbf{x}))^2,$
- and a model class f , e.g., the linear model $f\left(\mathbf{x}^{(i)}\mid\boldsymbol{\theta}\right)=\boldsymbol{\theta}^{\top}\mathbf{x}$.

SGD IN ML / 2

For large data sets, computing the exact gradient

$$
\mathbf{d} = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\boldsymbol{\theta}} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} | \boldsymbol{\theta}\right)\right)
$$

may be expensive or even infeasible to compute and is approximated by

$$
\hat{\mathbf{d}} = \frac{1}{m} \sum_{i \in J} \nabla_{\boldsymbol{\theta}} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right),
$$

for $J \subset 1, 2, ..., n$ random subset.

NB: Often, maximum size of *J* technically limited by memory size.

STOCHASTICITY OF SGD

Minimize $g(x_1, x_2) = 1.25(x_1 + 6)^2 + (x_2 - 8)^2$. **Left:** GD. **Right:** SGD. Black line shows average value across multiple runs. (Source: Shalev-Shwartz et al., Understanding Machine Learning, 2014.)

STOCHASTICITY OF SGD / 2

Assume batch size $m = 1$ (statements also apply for larger batches).

- **(Possibly) suboptimal direction:** Approximate gradient $\hat{\mathbf{d}} = \nabla_{\mathbf{x}} q_i(\mathbf{x})$ might point in suboptimal (possibly not even a descent!) direction
- **Unbiased estimate:** If *J* drawn i.i.d., approximate gradient **d**ˆ is an unbiased estimate of gradient $\mathbf{d} = \nabla_{\mathbf{x}} g(\mathbf{x}) = \sum^{n}$ *i*=1 $\nabla_{\mathbf{x}}g_i(\mathbf{x})$:

$$
\mathbb{E}_{i}\left[\nabla_{\mathbf{x}}g_{i}(\mathbf{x})\right]=\sum_{i=1}^{n}\nabla_{\mathbf{x}}g_{i}(\mathbf{x})\cdot\mathbb{P}(i=i) \n=\sum_{i=1}^{n}\nabla_{\mathbf{x}}g_{i}(\mathbf{x})\cdot\frac{1}{n}=\nabla_{\mathbf{x}}g(\mathbf{x}).
$$

Conclusion: SGD might perform single suboptimal moves, but moves in "right direction" **on average**.

Example: $g(\mathbf{x}) = \sum_{i=1}^{5} g_i(\mathbf{x})$, g_i quadratic. Batch size $m = 1$.

Example: $g(\mathbf{x}) = \sum_{i=1}^{5} g_i(\mathbf{x})$, g_i quadratic. Batch size $m = 1$.

Example: $g(\mathbf{x}) = \sum_{i=1}^{5} g_i(\mathbf{x})$, g_i quadratic. Batch size $m = 1$.

Example: $g(\mathbf{x}) = \sum_{i=1}^{5} g_i(\mathbf{x})$, g_i quadratic. Batch size $m = 1$.

Example: $g(\mathbf{x}) = \sum_{i=1}^{5} g_i(\mathbf{x})$, g_i quadratic. Batch size $m = 1$.

In iteration 5, SGD performs a suboptimal move away from the minimum.

X $\times\overline{\times}$

Blue area: Each $-\nabla g_i(\mathbf{x})$ points towards minimum. **Red area** ("confusion area"): $-\nabla g_i(\mathbf{x})$ might point away from minimum and perform a suboptimal move.

At location **x**, "confusion" is captured by variance of gradients

$$
\frac{1}{n}\sum_{i=1}^n \|\nabla_{\mathbf{x}}g_i(\mathbf{x}) - \nabla_{\mathbf{x}}g(\mathbf{x})\|^2
$$

- If term is 0, next step goes in gradient direction (for each *i*)
- If term is small, next step *likely* goes in gradient direction
- \bullet If term is large, next step likely goes in direction different than gradient

 \times \times

CONVERGENCE OF SGD

As a consequence, SGD has worse convergence properties than GD.

But: Can be controlled via **increasing batches** or **reducing step size**.

The larger the batch size *m*

- the better the approximation to $\nabla_{\mathbf{x}} g(\mathbf{x})$
- the lower the variance
- the lower the risk of performing steps in the wrong direction

The smaller the step size $α$

- the smaller a step in a potentially wrong direction
- the lower the effect of high variance

As maximum batch size is usually limited by computational resources (memory), choosing the step size is crucial.

X X

EFFECT OF BATCH SIZE

X \times \times

SGD for a NN with batch size $\in \{0.5\%, 10\%, 50\%\}$ of the training data. The higher the batch size, the lower the variance.