
Optimization in Machine Learning

First order methods
SGD

Learning goals
SGD

Stochasticity

Convergence

Batch size

STOCHASTIC GRADIENT DESCENT

NB: We use g instead of f as objective, bc. f is used as model in ML.

g : Rd → R objective, g average over functions:

g(x) =
1
n

n∑
i=1

gi(x), g and gi smooth

Stochastic gradient descent (SGD) approximates the gradient

∇x g(x) =
1
n

n∑
i=1

∇x gi(x) := d by

1
|J|

∑
i∈J

∇x gi(x) := d̂,

with random subset J ⊂ {1, 2, ..., n} of gradients called mini-batch.
This is done e.g. when computing the true gradient is expensive.

© Optimization in Machine Learning – 1 / 11

STOCHASTIC GRADIENT DESCENT / 2

Algorithm Basic SGD pseudo code

1: Initialize x[0], t = 0
2: while stopping criterion not met do
3: Randomly shuffle indices and partition into minibatches J1, ..., JK of size m
4: for k ∈ {1, ...,K} do
5: t ← t + 1
6: Compute gradient estimate with Jk : d̂[t] ← 1

m

∑
i∈Jk
∇xgi(x[t−1])

7: Apply update: x[t] ← x[t−1] − α · d̂[t]

8: end for
9: end while

Instead of drawing batches randomly we might want to go through the gi

sequentially (unless gi are sorted in any way)

Updates are computed faster, but also more stochastic:

In the simplest case, batch-size m := |Jk | is set to m = 1
If n is a billion, computation of update is a billion times faster

But (later): Convergence rates suffer from stochasticity!

© Optimization in Machine Learning – 2 / 11

SGD IN ML

In ML, we perform ERM:

R(θ) =
1
n

n∑
i=1

L
(

y (i), f
(

x(i) | θ
))

︸ ︷︷ ︸
gi(θ)

for a data set

D =
((

x(1), y (1)
)
, . . . ,

(
x(n), y (n)

))
a loss function L (y , f (x)), e.g., L2 loss L (y , f (x)) = (y − f (x))2,

and a model class f , e.g., the linear model f
(
x(i) | θ

)
= θ⊤x.

© Optimization in Machine Learning – 3 / 11

SGD IN ML / 2

For large data sets, computing the exact gradient

d =
1
n

n∑
i=1

∇θL
(

y (i), f
(

x(i) | θ
))

may be expensive or even infeasible to compute and is approximated by

d̂ =
1
m

∑
i∈J

∇θL
(

y (i), f
(

x(i) | θ
))

,

for J ⊂ 1, 2, ..., n random subset.

NB: Often, maximum size of J technically limited by memory size.

© Optimization in Machine Learning – 4 / 11

STOCHASTICITY OF SGD

Minimize g(x1, x2) = 1.25(x1 + 6)2 + (x2 − 8)2.
Left: GD. Right: SGD. Black line shows average value across multiple runs.

(Source: Shalev-Shwartz et al., Understanding Machine Learning, 2014.)

© Optimization in Machine Learning – 5 / 11

STOCHASTICITY OF SGD / 2

Assume batch size m = 1 (statements also apply for larger batches).

(Possibly) suboptimal direction: Approximate gradient
d̂ = ∇xgi(x) might point in suboptimal (possibly not even a
descent!) direction

Unbiased estimate: If J drawn i.i.d., approximate gradient d̂ is an

unbiased estimate of gradient d = ∇xg(x) =
n∑

i=1
∇xgi(x):

Ei [∇xgi(x)] =
n∑

i=1

∇xgi(x) · P(i = i)

=
n∑

i=1

∇xgi(x) ·
1
n
= ∇xg(x).

Conclusion: SGD might perform single suboptimal moves, but moves
in “right direction” on average.

© Optimization in Machine Learning – 6 / 11

ERRATIC BEHAVIOR OF SGD

Example: g(x) =
∑5

i=1 gi(x), gi quadratic. Batch size m = 1.

© Optimization in Machine Learning – 7 / 11

ERRATIC BEHAVIOR OF SGD

Example: g(x) =
∑5

i=1 gi(x), gi quadratic. Batch size m = 1.

© Optimization in Machine Learning – 7 / 11

ERRATIC BEHAVIOR OF SGD

Example: g(x) =
∑5

i=1 gi(x), gi quadratic. Batch size m = 1.

© Optimization in Machine Learning – 7 / 11

ERRATIC BEHAVIOR OF SGD

Example: g(x) =
∑5

i=1 gi(x), gi quadratic. Batch size m = 1.

© Optimization in Machine Learning – 7 / 11

ERRATIC BEHAVIOR OF SGD

Example: g(x) =
∑5

i=1 gi(x), gi quadratic. Batch size m = 1.

In iteration 5, SGD performs a suboptimal move away from the minimum.

© Optimization in Machine Learning – 7 / 11

ERRATIC BEHAVIOR OF SGD

Blue area: Each −∇gi(x) points towards minimum.
Red area (“confusion area”): −∇gi(x) might point away from minimum and

perform a suboptimal move.

© Optimization in Machine Learning – 8 / 11

ERRATIC BEHAVIOR OF SGD / 2

At location x, “confusion” is captured by variance of gradients

1
n

n∑
i=1

∥∇xgi(x)−∇xg(x)∥2

If term is 0, next step goes in gradient direction (for each i)

If term is small, next step likely goes in gradient direction

If term is large, next step likely goes in direction different than
gradient

© Optimization in Machine Learning – 9 / 11

CONVERGENCE OF SGD

As a consequence, SGD has worse convergence properties than GD.

But: Can be controlled via increasing batches or reducing step size.

The larger the batch size m

the better the approximation to ∇xg(x)

the lower the variance

the lower the risk of performing steps in the wrong direction

The smaller the step size α

the smaller a step in a potentially wrong direction

the lower the effect of high variance

As maximum batch size is usually limited by computational resources
(memory), choosing the step size is crucial.

© Optimization in Machine Learning – 10 / 11

EFFECT OF BATCH SIZE

100

200

300

400

0 25 50 75 100
epoch

lo
ss

bs_fraction

0.005

0.1

0.5

1

SGD with different batch sizes

SGD for a NN with batch size ∈ {0.5%, 10%, 50%} of the training data.
The higher the batch size, the lower the variance.

© Optimization in Machine Learning – 11 / 11

