Optimization in Machine Learning

First order methods
SGD

Learning goals
@ SGD
@ Stochasticity

g @ Convergence
4 @ Batch size
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STOCHASTIC GRADIENT DESCENT

NB: We use g instead of f as objective, bc. f is used as model in ML.

g : RY — R objective, g average over functions:

1 n
g(x) = . 21: gi(x), g and g; smooth
=

Stochastic gradient descent (SGD) approximates the gradient

1 n
Vig(x)= > Vxgi(x) = d by
i=1
1 ,
7va gj(X) = d7
VI

with random subset J C {1, 2, ..., n} of gradients called mini-batch.
This is done e.g. when computing the true gradient is expensive.
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STOCHASTIC GRADIENT DESCENT /2
Algorithm Basic SGD pseudo code

1: Initialize x%, t = 0

2: while stopping criterion not met do

3 Randomly shuffle indices and partition into minibatches s, ..., Jk of size m
4 fork € {1,...,K} do

5: t—t+1

6 Compute gradient estimate with Ji: di < 1 3 V,gi(xI=™)
7 Apply update: x!1 « xI=1 — o . g

8 end for

9: end while

i€dg

@ Instead of drawing batches randomly we might want to go through the g;
sequentially (unless g; are sorted in any way)
@ Updates are computed faster, but also more stochastic:

@ In the simplest case, batch-size m := |Ji| is setto m = 1
@ If nis a billion, computation of update is a billion times faster

@ But (later): Convergence rates suffer from stochasticity!
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SGD IN ML
In ML, we perform ERM:

@ for a data set

D= ((x0.y0) .. (x )

@ aloss function L (y, f(x)), e.g., L2 loss L (y, f(x)) = (y — f(x))?,
@ and a model class f, e.g., the linear model f (x() | 8) = 6" x.
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SGDIN ML /2

For large data sets, computing the exact gradient

1 — : 4
d= > VoL (y.1(x"6))
i=1
may be expensive or even infeasible to compute and is approximated by
A1 , ,
d=—> VoL (y('>, f (x(') | 0)) :
ied

for J C 1,2, ..., nrandom subset.

NB: Often, maximum size of J technically limited by memory size.
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STOCHASTICITY OF SGD

Minimize g(xy, x2) = 1.25(x; + 6)? + (% — 8)2.
Left: GD. Right: SGD. Black line shows average value across multiple runs.
(Source: Shalev-Shwartz et al., Understanding Machine Learning, 2014.)
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STOCHASTICITY OF SGD /2

Assume batch size m = 1 (statements also apply for larger batches).

@ (Possibly) suboptimal direction: Approximate gradient
d= Vxgi(x) might point in suboptimal (possibly not even a
descent!) direction

@ Unbiased estimate: If J drawn i.i.d., approximate gradient d is an
n

unbiased estimate of gradientd = Vg(x) = > Vygi(x):
i=1
n
Ei [Vxgi(¥)] =) Vxgi(x) - P(i =)

i=1

: 1
= Z Vxgi(x) - o= Vx9(x).
=1

Conclusion: SGD might perform single suboptimal moves, but moves
in “right direction” on average.
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ERRATIC BEHAVIOR OF SGD
Example: g(x) = ZL gi(x), gi quadratic. Batch size m = 1.

SGD step 1 on g(x) Exact GD step on g1
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ERRATIC BEHAVIOR OF SGD
Example: g(x) = ZL gi(x), gi quadratic. Batch size m = 1.

SGD step 2 on g(x)
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Exact GD step on g2
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ERRATIC BEHAVIOR OF SGD
Example: g(x) = ZL gi(x), gi quadratic. Batch size m = 1.

SGD step 3 on g(x) Exact GD step on g3
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ERRATIC BEHAVIOR OF SGD
Example: g(x) = ZL gi(x), gi quadratic. Batch size m = 1.

SGD step 4 on g(x) Exact GD step on g4
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ERRATIC BEHAVIOR OF SGD
Example: g(x) = ZL gi(x), gi quadratic. Batch size m = 1.

SGD step 5 on g(x) Exact GD step on g5
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In iteration 5, SGD performs a suboptimal move away from the minimum.
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ERRATIC BEHAVIOR OF SGD
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Blue area: Each —V g;(x) points towards minimum.
Red area (“confusion area”): —Vg;(x) might point away from minimum and
perform a suboptimal move.
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ERRATIC BEHAVIOR OF SGD /2

@ At location x, “confusion” is captured by variance of gradients

1 n
— D 1Vxai(%) = Vxg(x)|I*
i=1

@ If term is 0, next step goes in gradient direction (for each /)
@ If term is small, next step likely goes in gradient direction

@ If term is large, next step likely goes in direction different than
gradient
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CONVERGENCE OF SGD

As a consequence, SGD has worse convergence properties than GD.

But: Can be controlled via increasing batches or reducing step size.

The larger the batch size m
@ the better the approximation to Vxg(x)
@ the lower the variance
@ the lower the risk of performing steps in the wrong direction

The smaller the step size o
@ the smaller a step in a potentially wrong direction
@ the lower the effect of high variance

As maximum batch size is usually limited by computational resources
(memory), choosing the step size is crucial.
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EFFECT OF BATCH SIZE

SGD with different batch sizes
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SGD for a NN with batch size € {0.5%, 10%, 50%} of the training data.
The higher the batch size, the lower the variance.
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