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RECAP: WEAKNESSES OF GRADIENT DESCENT

Zig-zagging behavior: For ill-conditioned problems, GD moves
with a zig-zag course to the optimum, since the gradient points
approximately orthogonal in the shortest direction to the minimum.

Slow crawling: may vanish rapidly close to stationary points (e.g.
saddle points) and hence also slows down progress.

Trapped in stationary points: In some functions GD converges
to stationary points (e.g. saddle points) since gradient on all sides
is fairly flat and the step size is too small to pass this flat part.

Aim: More efficient algorithms which quickly reach the minimum.
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GD WITH MOMENTUM

Idea: “Velocity” ν: Increasing if successive gradients point in the
same direction but decreasing if they point in opposite directions

Source: Khandewal, GD with Momentum, RMSprop and Adam Optimizer, 2020.

ν is weighted moving average of previous gradients:

ν [t+1] = φν [t] − α∇f (x[t])

x[t+1] = x[t] + ν [t+1]

φ ∈ [0, 1) is additional hyperparameter
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GD WITH MOMENTUM / 2

Length of a single step depends on how large and aligned a
sequence of gradients is

Length of a single step grows if many successive gradients point in
the same direction

φ determines how strongly previous gradients are included in ν

Common values for φ are 0.5, 0.9 and even 0.99

In general, the larger φ is in relation to α, the more strongly
previous gradients influence the current direction

Special case φ = 0: “vanilla” gradient descent

Intuition: GD with “short term memory” for the direction of motion
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MOMENTUM: ANALYSIS

ν [1] = φν [0] − α∇f (x[0])

x[1] = x[0] + φν [0] − α∇f (x[0])

ν [2] = φν [1] − α∇f (x[1])

= φ(φν [0] − α∇f (x[0]))− α∇f (x[1])

x[2] = x[1] + φ(φν [0] − α∇f (x[0]))− α∇f (x[1])

ν [3] = φν [2] − α∇f (x[2])

= φ(φ(φν [0] − α∇f (x[0]))− α∇f (x[1]))− α∇f (x[2])

x[3] = x[2] + φ(φ(φν [0] − α∇f (x[0]))− α∇f (x[1]))− α∇f (x[2])

= x[2] + φ3ν [0] − φ2α∇f (x[0])− φα∇f (x[1])− α∇f (x[2])

= x[2] − α(φ2∇f (x[0]) + φ1∇f (x[1]) + φ0∇f (x[2])) + φ3ν [0]

x[t+1] = x[t] − α

t∑
j=0

φj∇f (x[t−j]) + φt+1ν [0]
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MOMENTUM: INTUITION

Suppose momentum always observes the same gradient ∇f (x[t]):

x[t+1] = x[t] − α

t∑
j=0

φj∇f (x[j]) + φt+1ν [0]

= x[t] − α∇f (x[t])
t∑

j=0

φj + φt+1ν [0]

= x[t] − α∇f (x[t])
1 − φt+1

1 − φ
+ φt+1ν [0]

→ x[t] − α∇f (x[t])
1

1 − φ
for t → ∞.

Momentum accelerates along −∇f (x[t]) to terminal velocity yielding
step size α/(1 − φ).

Example: Momentum with φ = 0.9 corresponds to a tenfold increase
in original step size α compared to vanilla gradient descent
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MOMENTUM: INTUITION / 2

Vector ν [3] (for ν [0] = 0):

ν [3] = φ(φ(φν [0] − α∇f (x[0]))− α∇f (x[1]))− α∇f (x[2])

= −φ2α∇f (x[0])− φα∇f (x[1])− α∇f (x[2])

Successive gradients pointing in same/different directions increase/decrease velocity.
Further geometric intuitions and detailed explanations:

https://distill.pub/2017/momentum/
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GD WITH MOMENTUM: ZIG-ZAG BEHAVIOUR

Consider a two-dimensional quadratic form f (x) = x2
1/2 + 10x2.

Let x[0] = (10, 1)⊤ and α = 0.1.

GD shows stronger zig-zag behaviour than GD with momentum.
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GD WITH MOMENTUM: ZIG-ZAG BEHAVIOUR / 2

Caution:

If momentum is too high, minimum is possibly missed

We might go back and forth around or between local minima
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GD WITH MOMENTUM: SADDLE POINTS

Consider the two-dimensional quadratic form f (x) = x2
1 − x2

2 with a
saddle point at (0, 0)⊤.

Let x[0] = (−1/2, 10−3)⊤ and α = 0.1.

GD was slowing down at the saddle point (vanishing gradient).
GD with momentum “breaks out” of the saddle point and moves on.
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ERM FOR NN WITH GD

Let D =
((

x(1), y (1)
)
, . . . ,

(
x(n), y (n)

))
, with y = x2

1 + x2
2 and minimize

Remp(θ) =
n∑

i=1

(
f (x | θ)− y (i)

)2

where f (x | θ) is a neural network with 2 hidden layers (2 units each).
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ERM FOR NN WITH GD / 2

After 10 iters of GD:
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ERM FOR NN WITH GD / 3

After 100 iters of GD:
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ERM FOR NN WITH GD / 4

After 300 iters of GD:
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ERM FOR NN WITH GD / 5

Gradient Descent with and without momentum
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NESTEROV ACCELERATED GRADIENT

Slightly modified version: Nesterov accelerated gradient
Stronger theoretical convergence guarantees for convex functions
Avoid moving back and forth near optima

ν [t+1] = φν [t] − α∇f (x[t] + φν [t])

x[t+1] = x[t] + ν [t+1]

Nesterov momentum update evaluates gradient at the "look-ahead" position.
(Source: https://cs231n.github.io/neural-networks-3/)
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MOMENTUM VS. NESTEROV

GD with momentum (left) vs. GD with Nesterov momentum (right).
Near minima, momentum makes a large step due to gradient history.

Nesterov momentum “looks ahead” and reduces effect of gradient history.
(Source: Chandra, 2015)
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