
Optimization in Machine Learning

First order methods
GD – Multimodality and Saddle points

Learning goals
Multimodality, GD result can be
arbitrarily bad

Saddle points, major problem in NN
error landscapes, GD can get stuck
or slow crawling



UNIMODAL VS. MULTIMODAL LOSS SURFACES

Snippet of a loss surface with many local optima
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UNIMODAL VS. MULTIMODAL LOSS SURFACES / 2

In deep learning, we often find multimodal loss surfaces.
Left: Multimodal loss surface. Right: (Nearly) unimodal loss surface.

(Source: Hao Li et al., 2017.
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GD: ONLY LOCALLY OPTIMAL MOVES

GD makes only locally optimal moves

It may move away from the global optimum

Source: Goodfellow et al., 2016

Initialization on “wrong” side of the hill results in weak performance

In higher dimensions, GD may move around the hill (potentially at the
cost of longer trajectory and time to convergence)
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LOCAL MINIMA

In practice: Only local minima with high value compared to global
minimium are problematic.

Source: Goodfellow et al., 2016
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LOCAL MINIMA / 2

Small differences in starting point or step size can lead to huge
differences in the reached minimum or even to non-convergence

(Non-)Converging gradient descent for Ackley function
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GD AT SADDLE POINTS

Example:

f (x1, x2) = x2
1 − x2

2

∇f (x1, x2) = (2x1,−2x2)
⊤

H =

(
2 0
0 −2

)
Along x1, curvature is
positive (λ1 = 2 > 0).

Along x2, curvature is
negative (λ2 = −2 < 0).
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EXAMPLE: SADDLE POINT WITH GD

How do saddle points impair optimization?

Gradient-based algorithms might get stuck in saddle points

Red dot: Starting location
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EXAMPLE: SADDLE POINT WITH GD

How do saddle points impair optimization?

Gradient-based algorithms might get stuck in saddle points

Step 1 ...
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EXAMPLE: SADDLE POINT WITH GD

How do saddle points impair optimization?

Gradient-based algorithms might get stuck in saddle points

... Step 2 ...
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EXAMPLE: SADDLE POINT WITH GD

How do saddle points impair optimization?

Gradient-based algorithms might get stuck in saddle points

... Step 10 ... got stuck and cannot escape saddle point
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EXAMPLE: SADDLE POINT WITH GD

How do saddle points impair optimization?

Gradient-based algorithms might get stuck in saddle points
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... Step 10 ... got stuck and cannot escape saddle point
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SADDLE POINTS IN NEURAL NETWORKS

For the empirical risk R : Rd → R of a neural network, the
expected ratio of the number of saddle points to local minima
typically grows exponentially with d

In other words: Networks with more parameters (deeper networks
or larger layers) exhibit a lot more saddle points than local minima

Reason: Hessian at local minimum has only positive eigenvalues.
Hessian at saddle point has positive and negative eigenvalues.

© Optimization in Machine Learning – 8 / 9



SADDLE POINTS IN NEURAL NETWORKS / 2

Imagine the sign of each eigenvalue is generated by coin flipping:

In a single dimension, it is easy to obtain a local minimum
(e.g. “head” means positive eigenvalue).
In an m-dimensional space, it is exponentially unlikely that all
m coin tosses will be head.

A property of many random functions is that eigenvalues of the
Hessian become more likely to be positive in regions of lower cost.

For the coin flipping example, this means we are more likely to
have heads m times if we are at a critical point with low cost.

That means in particular that local minima are much more likely to
have low cost than high cost and critical points with high cost are
far more likely to be saddle points.

“Saddle points are surrounded by high error plateaus that can
dramatically slow down learning, and give the illusory impression
of the existence of a local minimum” (Dauphin et al. (2014)).
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