Optimization in Machine Learning

First order methods
Weaknesses of GD – Curvature

Learning goals

- Effects of curvature
- Step size effect in GD

REMINDER: LOCAL QUADRATIC GEOMETRY

Locally approximate smooth function by quadratic Taylor polynomial:

$$f(\mathbf{x}) \approx f(\tilde{\mathbf{x}}) + \nabla f(\tilde{\mathbf{x}})^{\top} (\mathbf{x} - \tilde{\mathbf{x}}) + \frac{1}{2} (\mathbf{x} - \tilde{\mathbf{x}})^{\top} \nabla^2 f(\tilde{\mathbf{x}}) (\mathbf{x} - \tilde{\mathbf{x}})$$

Source: daniloroccatano.blog.

REMINDER: LOCAL QUADRATIC GEOMETRY /2

Study Hessian $\mathbf{H} = \nabla^2 f(\mathbf{x}^{[t]})$ in GD to discuss effect of curvature

Recall for quadratic forms:

- \bullet Eigenvector \textbf{v}_{max} $(\textbf{v}_{\text{min}})$ is direction of largest (smallest) curvature
- **H** called ill-conditioned if $\kappa(\mathbf{H}) = |\lambda_{\max}|/|\lambda_{\min}|$ is large

EFFECTS OF CURVATURE

Intuitively, curvature determines reliability of a GD step

Quadratic objective f (blue) with gradient approximation (dashed green).

Left: f decreases faster than ∇f predicts. **Center:** ∇f predicts decrease

correctly. **Right:** f decreases more slowly than ∇f predicts.

(Source: Goodfellow et al., 2016)

EFFECTS OF CURVATURE / 2

Worst case: H is ill-conditioned. What does this mean for GD?

• Quadratic Taylor polynomial of f around $\tilde{\mathbf{x}}$ (with gradient $\mathbf{g} = \nabla f$)

$$f(\mathbf{x}) \approx f(\tilde{\mathbf{x}}) + (\mathbf{x} - \tilde{\mathbf{x}})^{\top} \mathbf{g} + \frac{1}{2} (\mathbf{x} - \tilde{\mathbf{x}})^{\top} \mathbf{H} (\mathbf{x} - \tilde{\mathbf{x}})$$

ullet GD step with step size $\alpha >$ 0 yields

$$f(\tilde{\mathbf{x}} - \alpha \mathbf{g}) \approx f(\tilde{\mathbf{x}}) - \alpha \mathbf{g}^{\mathsf{T}} \mathbf{g} + \frac{1}{2} \alpha^2 \mathbf{g}^{\mathsf{T}} \mathbf{H} \mathbf{g}$$

• If $\mathbf{g}^{\top} H \mathbf{g} > 0$, we can solve for optimal step size α^* :

$$\alpha^* = \frac{\mathbf{g}^{\mathsf{T}} \mathbf{g}}{\mathbf{g}^{\mathsf{T}} \mathbf{H} \mathbf{g}}$$

 \bullet If g points along v_{max} (largest curvature), optimal step size is

$$\alpha^* = \frac{\mathbf{g}^{\top}\mathbf{g}}{\mathbf{g}^{\top}\mathbf{H}\mathbf{g}} = \frac{\mathbf{g}^{\top}\mathbf{g}}{\lambda_{\max}\mathbf{g}^{\top}\mathbf{g}} = \frac{1}{\lambda_{\max}}.$$

- \Rightarrow *Large* step sizes can be problematic.
- ullet If $oldsymbol{g}$ points along $oldsymbol{v}_{min}$ (smallest curvature), then analogously

$$\alpha^* = \frac{1}{\lambda_{\min}}.$$

- \Rightarrow *Small* step sizes can be problematic.
- **Ideally**: Perform large step along v_{min} but small step along v_{max} .

- What if g is not aligned with eigenvectors?
- Consider 2D case: Decompose g (black) into v_{max} and v_{min}

- Ideally, perform large step along v_{min} but small step along v_{max}
- However, gradient almost only points along v_{max}

- GD is not aware of curvatures and can only walk along g
- Large step sizes result in "zig-zag" behaviour.
- Small step sizes result in weak performance.

Poorly conditioned quadratic form. GD with large (red) and small (blue) step size. For both, convergence to optimum is slow.

• Large step sizes for ill-conditioned Hessian can even increase

$$f(\tilde{\mathbf{x}} - \alpha \mathbf{g}) \approx f(\tilde{\mathbf{x}}) - \alpha \mathbf{g}^{\top} \mathbf{g} + \frac{1}{2} \alpha^2 \mathbf{g}^{\top} \mathbf{H} \mathbf{g}$$

if

$$\frac{1}{2}\alpha^2\mathbf{g}^{\top}\mathbf{H}\mathbf{g}>\alpha\mathbf{g}^{\top}\mathbf{g}\quad\Leftrightarrow\quad\alpha>2\frac{\mathbf{g}^{\top}\mathbf{g}}{\mathbf{g}^{\top}\mathbf{H}\mathbf{g}}.$$

Ill-conditioning in practice: Monitor gradient norm and objective

Source: Goodfellow et al., 2016

- ullet If gradient norms $\|\mathbf{g}\|$ increase, GD is not converging since $\mathbf{g} \neq \mathbf{0}$.
- \bullet Even if $\|\boldsymbol{g}\|$ increases, objective may stay approximately constant:

$$\underbrace{f(\tilde{\mathbf{x}} - \alpha \mathbf{g})}_{\approx \text{ constant}} \approx f(\tilde{\mathbf{x}}) - \alpha \underbrace{\mathbf{g}^{\top} \mathbf{g}}_{\text{increases}} + \frac{1}{2} \alpha^2 \underbrace{\mathbf{g}^{\top} \mathbf{H} \mathbf{g}}_{\text{increases}}$$

