Optimization in Machine Learning

First order methods
Weaknesses of GD — Curvature

Learning goals
@ Effects of curvature
@ Step size effect in GD
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REMINDER: LOCAL QUADRATIC GEOMETRY

Locally approximate smooth function by quadratic Taylor polynomial:

f(x) ~ f(X) + V)T (x — %) + %(x — %) V2H(%)(x — %)

Source: daniloroccatano.blog.
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REMINDER: LOCAL QUADRATIC GEOMETRY /2

Study Hessian H = V2f(x[1l) in GD to discuss effect of curvature OO0 X
Recall for quadratic forms: x O
@ Eigenvector Vinax (Vimin) is direction of largest (smallest) curvature
@ H called ill-conditioned if kK(H) = |Amax|/|Amin| is large x x
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EFFECTS OF CURVATURE

Intuitively, curvature determines reliability of a GD step

Negative curvature ~ No curvature Positive curvature
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Quadratic objective f (blue) with gradient approximation (dashed green).
Left: f decreases faster than Vf predicts. Center: Vf predicts decrease
correctly. Right: f decreases more slowly than Vf predicts.
(Source: Goodfellow et al., 2016)
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EFFECTS OF CURVATURE /2
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CURVATURE AND STEP SIZE IN GD

Worst case: H is ill-conditioned. What does this mean for GD?
@ Quadratic Taylor polynomial of f around X (with gradient g = V)

F(x) ~ F(%) + (x — %) g + %(x — %) H(x - %)
@ GD step with step size o > 0 yields
- - 1
f(x —ag) ~ f(X) —ag' g+ EQZQTHQ

@ If g" Hg > 0, we can solve for optimal step size a*:
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CURVATURE AND STEP SIZE IN GD /2

@ If g points along vmax (largest curvature), optimal step size is

y-99 _ 9'g _ 1
9"Hg  Anax@'9  Amax

= Large step sizes can be problematic.
@ If g points along vmin (smallest curvature), then analogously

1
E
a = .
)\min

= Small step sizes can be problematic.

@ Ideally: Perform large step along viin but small step along viax.

Optimization in Machine Learning — 6/ 11



CURVATURE AND STEP SIZE IN GD /3

@ What if g is not aligned with eigenvectors? O O X
@ Consider 2D case: Decompose g (black) into viyax and Viin

X X
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@ Ideally, perform large step along v, but small step along viax
@ However, gradient almost only points along v ayx
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CURVATURE AND STEP SIZE IN GD /4

@ GD is not aware of curvatures and can only walk along g
@ Large step sizes result in “zig-zag” behaviour.
@ Small step sizes result in weak performance.

Paraboloid ®  Global Optimum
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Poorly conditioned quadratic form. GD with large (red) and small (blue) step

size. For both, convergence to optimum is slow.
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CURVATURE AND STEP SIZE IN GD /5

@ Large step sizes for ill-conditioned Hessian can even increase

N N 1
f(x —ag) ~ f(X) — ag'g+ §a2gTHg

ag'g

50[ gTHg .
@ lll-conditioning in practice: Monitor gradient norm and objective

2g'"Hg>ag'g < a>2
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CURVATURE AND STEP SIZE IN GD /6
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Source: Goodfellow et al., 2016
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CURVATURE AND STEP SIZE IN GD /7

@ If gradient norms ||g|| increase, GD is not converging since g # 0.

@ Evenif ||g|| increases, objective may stay approximately constant:

- . 1
f(x—ag)~f(X) —a g'g +-a° g'Hg
N~ 2 ~—
~~ constant INnCreases INnCreases
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