Optimization in Machine Learning

Deep dive
Gradient descent and optimality
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Learning goals
@ Convergence of GD
@ Proof strategy and tools
@ Descent lemma
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SETTING

@ GD is greedy: locally optimal moves in each iteration

@ If f is convex, differentiable and has a Lipschitz gradient, GD
converges to global minimum for sufficiently small step sizes.
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SETTING /2

Assumptions:
@ f convex and differentiable
@ Global minimum x* exists

@ f has Lipschitz gradient (Vf does not change too fast)

[Vi(x) — VIX)|| < L|jx — x| forall x,X

[0] _ y*12
Ky _ ity < X0 = X7
f(x) — f(x*) < ook

In other words: GD converges with rate O(1/k).

Theorem (Convergence of GD). GD with step size o < 1/L yields
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PROOF STRATEGY

@ Show that f(x!) strictly decreases with each iteration t

Descent lemma:

) < (el — 2 vl 2

© Bound error of one step

f(x[t-H]) N f(X*) < (Hx[t] - X*HZ B ||X[H-1] N x*”2>

1
2«

© Finalize by telescoping argument
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MAIN TOOL

Recall: First order condition of convexity

Every tangent line of f is always below f.

f(y) > f(x) + V(%) (y — x)
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DESCENT LEMMA

Recall: Vf Lipschitz = V2f(x) < LI forall x
This gives convexity of g(x) := 5|x||> — f(x) since
V2g(x) = L- I — V3f(x) = 0.
First order condition of convexity of g yields
9(x) = g(x!) + vg(x!) T (x — x11)
e X2 00 > xR — () + (X DA T (- )

=
e f(x) < f(X[t]) + Vf(x[t])—'—(x — x[f]) + é”x _ I2
Now: One GD step with step size o < 1/L:

x « xIH1 = ¢l — 4 vf (x[’]>
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DESCENT LEMMA /2
L
F(x < F(xl FxINT (xl+1] ] Sliglt+11 _ 12
() < F(x) 4+ VIA(xT) T (x ) + 5l x|
= f(xIM) + VAT (xlT — av(x[1) — x!T)
+ é”x[’] — aV(xy — x)2

= f(xl) — V(I Tavf(x1) + éHan(xm)Hz

La?
= f(x11) — || V(x| + 7\\Vf(x[’])||2

< 1) = 2V |2
Note: o < 1/Lyields La? < «
@ | VF(x[1)]2 > 0 unless VF(x) =0
@ f strictly decreases with each GD iteration until optimum reached

@ Descent lemma yields bound on guaranteed progress if o < 1/L
(explains why GD may diverge if step sizes too large)
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ONE STEP ERROR BOUND

Again, first order condition of convexity gives
f(xl1) — £(x*) < VAT (xld — x).
This and the descent lemma yields
) — 1) < 1) = SV 2 1(x7)
= () — 1(x") = ZIIVA(x) 2

< VATl —x) = 2wl P

1 * *

= 5a (Hx[’] —x*)2 — [l —x* — an(x[’])H2>
1 * *

=5, (”x[t] —x*|2 =[xl — x ||2>

Note: Line 3 — 4 is hard to see (just expand line 4).
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FINALIZATION

Summing over iterations yields

K(f(xI <Z[f [y — f(x*)]

< Z oo [T = et —x 2]

1 * k
= o (I —x7 2 — x4 — x|

< oo (I —x7|?)

Arguments: Descent lemma (line 1). Telescoping sum (line 2 — 3).

0] _ x*Hz

2ak

It

) — 1) <
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