Optimization in Machine Learning # Deep dive Gradient descent and optimality #### Learning goals - Convergence of GD - Proof strategy and tools - Descent lemma # **SETTING** - GD is **greedy**: **locally optimal** moves in each iteration - If f is convex, differentiable and has a Lipschitz gradient, GD converges to global minimum for sufficiently small step sizes. ### SETTING / 2 # **Assumptions:** - f convex and differentiable - Global minimum x* exists - f has Lipschitz gradient (∇f does not change too fast) $$\|\nabla f(\mathbf{x}) - \nabla f(\tilde{\mathbf{x}})\| \le L\|\mathbf{x} - \tilde{\mathbf{x}}\|$$ for all $\mathbf{x}, \tilde{\mathbf{x}}$ $$f(\mathbf{x}^{[k]}) - f(\mathbf{x}^*) \leq \frac{\|\mathbf{x}^{[0]} - \mathbf{x}^*\|^2}{2\alpha k}.$$ In other words: GD converges with rate $\mathcal{O}(1/k)$. # **PROOF STRATEGY** • Show that $f(\mathbf{x}^{[t]})$ strictly decreases with each iteration t #### **Descent lemma:** $$f(\mathbf{x}^{[t+1]}) \leq f(\mathbf{x}^{[t]}) - \frac{\alpha}{2} \|\nabla f(\mathbf{x}^{[t]})\|^2$$ Bound error of one step $$f(\mathbf{x}^{[t+1]}) - f(\mathbf{x}^*) \le \frac{1}{2\alpha} \left(\|\mathbf{x}^{[t]} - \mathbf{x}^*\|^2 - \|\mathbf{x}^{[t+1]} - \mathbf{x}^*\|^2 \right)$$ 3 Finalize by **telescoping** argument # **MAIN TOOL** **Recall:** First order condition of convexity Every tangent line of f is always below f. $$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$ # **DESCENT LEMMA** **Recall:** ∇f Lipschitz $\Longrightarrow \nabla^2 f(\mathbf{x}) \preccurlyeq L \cdot \mathbf{I}$ for all \mathbf{x} This gives convexity of $g(\mathbf{x}) := \frac{L}{2} ||\mathbf{x}||^2 - f(\mathbf{x})$ since $$\nabla^2 g(\mathbf{x}) = L \cdot I - \nabla^2 f(\mathbf{x}) \geqslant 0.$$ First order condition of convexity of g yields $$g(\mathbf{x}) \geq g(\mathbf{x}^{[t]}) + \nabla g(\mathbf{x}^{[t]})^{\top} (\mathbf{x} - \mathbf{x}^{[t]})$$ $$\Leftrightarrow \frac{L}{2} ||\mathbf{x}||^{2} - f(\mathbf{x}) \geq \frac{L}{2} ||\mathbf{x}^{[t]}||^{2} - f(\mathbf{x}^{[t]}) + (L\mathbf{x}^{[t]} - \nabla f(\mathbf{x}^{[t]}))^{\top} (\mathbf{x} - \mathbf{x}^{[t]})$$ $$\Leftrightarrow \qquad \vdots$$ $$\Leftrightarrow \qquad f(\mathbf{x}) \leq f(\mathbf{x}^{[t]}) + \nabla f(\mathbf{x}^{[t]})^{\top} (\mathbf{x} - \mathbf{x}^{[t]}) + \frac{L}{2} ||\mathbf{x} - \mathbf{x}^{[t]}||^{2}$$ **Now:** One GD step with step size $\alpha \leq 1/L$: $$\mathbf{x} \leftarrow \mathbf{x}^{[t+1]} = \mathbf{x}^{[t]} - \alpha \nabla f \left(\mathbf{x}^{[t]} \right)$$ # **DESCENT LEMMA / 2** $$f(\mathbf{x}^{[t+1]}) \leq f(\mathbf{x}^{[t]}) + \nabla f(\mathbf{x}^{[t]})^{\top} (\mathbf{x}^{[t+1]} - \mathbf{x}^{[t]}) + \frac{L}{2} \|\mathbf{x}^{[t+1]} - \mathbf{x}^{[t]}\|^{2}$$ $$= f(\mathbf{x}^{[t]}) + \nabla f(\mathbf{x}^{[t]})^{\top} (\mathbf{x}^{[t]} - \alpha \nabla f(\mathbf{x}^{[t]}) - \mathbf{x}^{[t]})$$ $$+ \frac{L}{2} \|\mathbf{x}^{[t]} - \alpha \nabla f(\mathbf{x}^{[t]}) - \mathbf{x}^{[t]}\|^{2}$$ $$= f(\mathbf{x}^{[t]}) - \nabla f(\mathbf{x}^{[t]})^{\top} \alpha \nabla f(\mathbf{x}^{[t]}) + \frac{L}{2} \|\alpha \nabla f(\mathbf{x}^{[t]})\|^{2}$$ $$= f(\mathbf{x}^{[t]}) - \alpha \|\nabla f(\mathbf{x}^{[t]})\|^{2} + \frac{L\alpha^{2}}{2} \|\nabla f(\mathbf{x}^{[t]})\|^{2}$$ $$\leq f(\mathbf{x}^{[t]}) - \frac{\alpha}{2} \|\nabla f(\mathbf{x}^{[t]})\|^{2}$$ **Note:** $\alpha < 1/L$ yields $L\alpha^2 < \alpha$ - $ullet \| abla f(\mathbf{x}^{[t]}) \|^2 > 0 \text{ unless } abla f(\mathbf{x}) = \mathbf{0}$ - f strictly decreases with each GD iteration until optimum reached - Descent lemma yields bound on **guaranteed progress** if $\alpha \leq 1/L$ (explains why GD may diverge if step sizes too large) # **ONE STEP ERROR BOUND** Again, first order condition of convexity gives $$f(\mathbf{x}^{[t]}) - f(\mathbf{x}^*) \leq \nabla f(\mathbf{x}^{[t]})^{\top} (\mathbf{x}^{[t]} - \mathbf{x}^*).$$ This and the descent lemma yields 0 $$f(\mathbf{x}^{[t+1]}) - f(\mathbf{x}^*) \le f(\mathbf{x}^{[t]}) - \frac{\alpha}{2} \|\nabla f(\mathbf{x}^{[t]})\|^2 - f(\mathbf{x}^*)$$ $$= f(\mathbf{x}^{[t]}) - f(\mathbf{x}^*) - \frac{\alpha}{2} \|\nabla f(\mathbf{x}^{[t]})\|^2$$ $$\le \nabla f(\mathbf{x}^{[t]})^{\top} (\mathbf{x}^{[t]} - \mathbf{x}^*) - \frac{\alpha}{2} \|\nabla f(\mathbf{x}^{[t]})\|^2$$ $$= \frac{1}{2\alpha} \left(\|\mathbf{x}^{[t]} - \mathbf{x}^*\|^2 - \|\mathbf{x}^{[t]} - \mathbf{x}^* - \alpha \nabla f(\mathbf{x}^{[t]})\|^2 \right)$$ $$= \frac{1}{2\alpha} \left(\|\mathbf{x}^{[t]} - \mathbf{x}^*\|^2 - \|\mathbf{x}^{[t+1]} - \mathbf{x}^*\|^2 \right)$$ **Note:** Line $3 \rightarrow 4$ is hard to see (just expand line 4). # **FINALIZATION** Summing over iterations yields $$k(f(\mathbf{x}^{[k]}) - f(\mathbf{x}^*)) \leq \sum_{t=1}^{k} [f(\mathbf{x}^{[t]}) - f(\mathbf{x}^*)]$$ $$\leq \sum_{t=1}^{k} \frac{1}{2\alpha} \left[\|\mathbf{x}^{[t-1]} - \mathbf{x}^*\|^2 - \|\mathbf{x}^{[t]} - \mathbf{x}^*\|^2 \right]$$ $$= \frac{1}{2\alpha} \left(\|\mathbf{x}^{[0]} - \mathbf{x}^*\|^2 - \|\mathbf{x}^{[k]} - \mathbf{x}^*\|^2 \right)$$ $$\leq \frac{1}{2\alpha} \left(\|\mathbf{x}^{[0]} - \mathbf{x}^*\|^2 \right).$$ **Arguments:** Descent lemma (line 1). Telescoping sum (line $2 \rightarrow 3$). $$f(\mathbf{x}^{[t+1]}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{[0]} - \mathbf{x}^*\|^2}{2\alpha k}$$