
Optimization in Machine Learning

First order methods
Step size and optimality

Learning goals
Impact of step size

Fixed vs. adaptive step size

Exact line search

Armijo rule & Backtracking

Bracketing & Pinpointing

CONTROLLING STEP SIZE: FIXED & ADAPTIVE

Iteration t : Choose not only descent direction d[t], but also step size α[t]

First approach: Fixed step size α[t] = α > 0
If α too small, procedure may converge very slowly (left)

If α too large, procedure may not converge→ “jumps” around optimum (middle)

Adaptive step size α[t] can provide better convergence (right)

Steps of line searches for f (x) = 10x2
1 + x2

2/2

© Optimization in Machine Learning – 1 / 9

STEP SIZE CONTROL: DIMINISHING STEP SIZE

How can we adaptively control step size?

A natural way of selecting α[t] is to decrease its value over time

Example: GD on

f (x) =

{
1
2x2 if |x | ≤ δ,

δ · (|x | − 1/2 · δ) otherwise.

0.00

0.01

0.02

0.03

0.04

0.05

−1.0 −0.5 0.0 0.5 1.0
x

y

0.00

0.01

0.02

0.03

0.04

0 5 10 15 20
t

y

stepsize

0.5

10

10/t

GD with small constant (red), large constant (green), and diminishing (blue) step size

© Optimization in Machine Learning – 2 / 9

STEP SIZE CONTROL: EXACT LINE SEARCH

Use optimal step size in each iteration:

α[t] = argmin
α∈R≥0

g(α) = argmin
α∈R≥0

f (x [t] + αd[t])

Need to solve a univariate optimization
problem in each iteration
⇒ univariate optimization methods

Problem: Expensive, prone to poorly
conditioned problems

But: No need for optimal step size. Only
need a step size that is “good enough”.
Reason: Effort may not pay off, but in
some cases slows down performance.

© Optimization in Machine Learning – 3 / 9

ARMIJO RULE

f(x) f(x + α d)

Tangent

α ∇ f(x)T d

tapered tangent
γ1 α ∇ f(x)T d

Armijo rule holds

−2

−1

0

1

2

3

0 1 2 3 4
α

y

Inexact line search: Minimize objective “sufficiently” without computing
optimal step size exactly

Common condition to guarantee “sufficient” decrease: Armijo rule

Fix γ1 ∈ (0, 1). α satisfies Armijo rule in x for descent direction d if

f (x + αd) ≤ f (x) + γ1α∇f (x)⊤d.

Note: ∇f (x)⊤d < 0 (d descent dir.) =⇒ f (x + αd) < f (x).

Feasibility: For descent direction d and γ1 ∈ (0, 1), there exists α > 0
fulfilling Armijo rule. In many cases, Armijo rule guarantees local
convergence of GD and is therefore frequently used.

© Optimization in Machine Learning – 4 / 9

ARMIJO RULE

f(x) f(x + α d)

Tangent

α ∇ f(x)T d

tapered tangent
γ1 α ∇ f(x)T d

Armijo rule holds

−2

−1

0

1

2

3

0 1 2 3 4
α

y

Inexact line search: Minimize objective “sufficiently” without computing
optimal step size exactly

Common condition to guarantee “sufficient” decrease: Armijo rule

Fix γ1 ∈ (0, 1). α satisfies Armijo rule in x for descent direction d if

f (x + αd) ≤ f (x) + γ1α∇f (x)⊤d.

Note: ∇f (x)⊤d < 0 (d descent dir.) =⇒ f (x + αd) < f (x).

Feasibility: For descent direction d and γ1 ∈ (0, 1), there exists α > 0
fulfilling Armijo rule. In many cases, Armijo rule guarantees local
convergence of GD and is therefore frequently used.

© Optimization in Machine Learning – 4 / 9

ARMIJO RULE

f(x) f(x + α d)

Tangent

α ∇ f(x)T d

tapered tangent
γ1 α ∇ f(x)T d

Armijo rule holds

−2

−1

0

1

2

3

0 1 2 3 4
α

y

Inexact line search: Minimize objective “sufficiently” without computing
optimal step size exactly

Common condition to guarantee “sufficient” decrease: Armijo rule

Fix γ1 ∈ (0, 1). α satisfies Armijo rule in x for descent direction d if

f (x + αd) ≤ f (x) + γ1α∇f (x)⊤d.

Note: ∇f (x)⊤d < 0 (d descent dir.) =⇒ f (x + αd) < f (x).

Feasibility: For descent direction d and γ1 ∈ (0, 1), there exists α > 0
fulfilling Armijo rule. In many cases, Armijo rule guarantees local
convergence of GD and is therefore frequently used.

© Optimization in Machine Learning – 4 / 9

BACKTRACKING LINE SEARCH
Procedure to meet the Armijo rule: Backtracking line search

Idea: Decrease α until Armijo rule is met

Algorithm Backtracking line search
1: Choose initial step size α = αinit, 0 < γ1 < 1 and 0 < τ < 1
2: while f (x + αd) > f (x) + γ1α∇f (x)⊤d do
3: Decrease α: α← τ · α
4: end while

(Source: Martins and Ning. Engineering Design Optimization, 2021.)

© Optimization in Machine Learning – 5 / 9

BACKTRACKING LINE SEARCH / 2

© Optimization in Machine Learning – 6 / 9

WOLFE CONDITIONS

Backtracking is simple and shows good performance in practice

But: Two undesirable scenarios
1 Initial step size αinit is too large ⇒ need multiple evaluations of f
2 Step size is too small with highly negative slopes

Solution for small step sizes:

Fix γ2 with 0 < γ1 < γ2 < 1.

α satisfies sufficient curvature condition in x for d if

|∇f (x + αd)⊤d| ≤ γ2|∇f (x)⊤d|.

Armijo rule + sufficient curvature condition = Wolfe conditions

© Optimization in Machine Learning – 7 / 9

WOLFE CONDITIONS / 2

Algorithm for finding a Wolfe point (point satisfying Wolfe conditions):
1 Bracketing: Find interval containing Wolfe point
2 Pinpointing: Find Wolfe point in interval from bracketing

Left: Bracketing. Right: Pinpointing.

(Source: Martins and Ning. EDO, 2021.)

© Optimization in Machine Learning – 8 / 9

BRACKETING & PINPOINTING

Example:

Large initial step size results in quick bracketing but multiple
pinpointing steps (left).

Small initial step size results in multiple bracketing steps but quick
pinpointing (right).

Source: Martins and Ning. EDO, 2021.

© Optimization in Machine Learning – 9 / 9

