Optimization in Machine Learning

First order methods Step size and optimality

X \times \times

Learning goals

- Impact of step size
- Fixed vs. adaptive step size
- Exact line search
- Armijo rule & Backtracking
- Bracketing & Pinpointing \bullet

CONTROLLING STEP SIZE: FIXED & ADAPTIVE

Iteration *t*: Choose not only descent direction $\mathbf{d}^{[t]}$, but also step size $\alpha^{[t]}$ First approach: **Fixed** step size $\alpha^{[t]} = \alpha > 0$

- \bullet If α too small, procedure may converge very slowly (left)
- **If** α too large, procedure may not converge \rightarrow "jumps" around optimum (middle)

Adaptive step size $\alpha^{[t]}$ can provide better convergence (right)

 $\overline{\mathbf{X}}$

STEP SIZE CONTROL: DIMINISHING STEP SIZE

How can we adaptively control step size?

A natural way of selecting $\alpha^{[t]}$ is to decrease its value over time **Example:** GD on

$$
f(x) = \begin{cases} \frac{1}{2}x^2 & \text{if } |x| \le \delta, \\ \delta \cdot (|x| - 1/2 \cdot \delta) & \text{otherwise.} \end{cases}
$$

GD with small constant (**red**), large constant (**green**), and diminishing (**blue**) step size

© Optimization in Machine Learning – 2 / 9

X

XX

STEP SIZE CONTROL: EXACT LINE SEARCH

Use **optimal** step size in each iteration:

$$
\alpha^{[t]} = \argmin_{\alpha \in \mathbb{R}_{\geq 0}} g(\alpha) = \argmin_{\alpha \in \mathbb{R}_{\geq 0}} f(\mathbf{x}^{[t]} + \alpha \mathbf{d}^{[t]})
$$

Need to solve a **univariate** optimization problem in each iteration \Rightarrow univariate optimization methods

Problem: Expensive, prone to poorly conditioned problems

But: No need for *optimal* step size. Only need a step size that is "good enough". **Reason:** Effort may not pay off, but in some cases slows down performance.

ARMIJO RULE

Inexact line search: Minimize objective "sufficiently" without computing optimal step size exactly

Common condition to guarantee "sufficient" decrease: **Armijo rule**

ARMIJO RULE

Fix $\gamma_1 \in (0, 1)$. α satisfies **Armijo rule** in **x** for descent direction **d** if

$$
f(\mathbf{x} + \alpha \mathbf{d}) \leq f(\mathbf{x}) + \gamma_1 \alpha \nabla f(\mathbf{x})^\top \mathbf{d}.
$$

 $\mathbf{Note: } \nabla f(\mathbf{x})^\top \mathbf{d} < 0 \text{ (d descent dir.) } \implies f(\mathbf{x} + \alpha \mathbf{d}) < f(\mathbf{x}).$

ARMIJO RULE

Feasibility: For descent direction **d** and $\gamma_1 \in (0, 1)$, there exists $\alpha > 0$ fulfilling Armijo rule. In many cases, Armijo rule guarantees local convergence of GD and is therefore frequently used.

BACKTRACKING LINE SEARCH

Procedure to meet the Armijo rule: **Backtracking** line search

Idea: Decrease α until Armijo rule is met

Algorithm Backtracking line search

1: Choose initial step size $\alpha = \alpha_{\text{init}}$, $0 < \gamma_1 < 1$ and $0 < \tau < 1$

- 2: while $f(\pmb{x} + \alpha \pmb{\mathsf{d}}) > f(\pmb{x}) + \gamma_1 \alpha \nabla f(\pmb{x})^\top \pmb{\mathsf{d}}$ do
- 3: Decrease α : $\alpha \leftarrow \tau \cdot \alpha$
- 4: **end while**

(Source: Martins and Ning. *Engineering Design Optimization*, 2021.)

BACKTRACKING LINE SEARCH /2

 X $\times\overline{\times}$

WOLFE CONDITIONS

Backtracking is simple and shows good performance in practice

But: Two undesirable scenarios

- **1** Initial step size α_{init} is too large \Rightarrow need multiple evaluations of *f*
- **²** Step size is too small with highly negative slopes

Solution for small step sizes:

- Fix γ_2 with $0 < \gamma_1 < \gamma_2 < 1$.
- α satisfies **sufficient curvature condition** in **x** for **d** if

 $|\nabla f(\mathbf{x} + \alpha \mathbf{d})^{\top} \mathbf{d}| \leq \gamma_2 |\nabla f(\mathbf{x})^{\top} \mathbf{d}|.$

Armijo rule + sufficient curvature condition = **Wolfe conditions**

 $\overline{}$

WOLFE CONDITIONS / 2

Algorithm for finding a Wolfe point (point satisfying Wolfe conditions):

- **1 Bracketing:** Find interval containing Wolfe point
- **² Pinpointing:** Find Wolfe point in interval from bracketing

Left: Bracketing. **Right:** Pinpointing. (Source: Martins and Ning. *EDO*, 2021.)

BRACKETING & PINPOINTING

Example:

- Large initial step size results in quick bracketing but multiple pinpointing steps (**left**).
- Small initial step size results in multiple bracketing steps but quick pinpointing (**right**).

Source: Martins and Ning. *EDO*, 2021.

 \times \times