Optimization in Machine Learning

First order methods Step size and optimality

× 0 0 × × ×

Learning goals

- Impact of step size
- Fixed vs. adaptive step size
- Exact line search
- Armijo rule & Backtracking
- Bracketing & Pinpointing

CONTROLLING STEP SIZE: FIXED & ADAPTIVE

Iteration *t*: Choose not only descent direction $\mathbf{d}^{[t]}$, but also step size $\alpha^{[t]}$ First approach: **Fixed** step size $\alpha^{[t]} = \alpha > 0$

- If α too small, procedure may converge very slowly (left)
- If α too large, procedure may not converge \rightarrow "jumps" around optimum (middle)

Adaptive step size $\alpha^{[t]}$ can provide better convergence (right)

× 0 0 × 0 × ×

STEP SIZE CONTROL: DIMINISHING STEP SIZE

How can we adaptively control step size?

A natural way of selecting $\alpha^{[t]}$ is to decrease its value over time **Example:** GD on

$$f(x) = \begin{cases} \frac{1}{2}x^2 & \text{if } |x| \le \delta, \\ \delta \cdot (|x| - 1/2 \cdot \delta) & \text{otherwise.} \end{cases}$$

GD with small constant (red), large constant (green), and diminishing (blue) step size

Optimization in Machine Learning - 2/9

Х

хx

STEP SIZE CONTROL: EXACT LINE SEARCH

Use optimal step size in each iteration:

$$\alpha^{[t]} = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}_{\geq 0}} g(\alpha) = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}_{\geq 0}} f(\mathbf{x}^{[t]} + \alpha \mathbf{d}^{[t]})$$

Need to solve a **univariate** optimization problem in each iteration \Rightarrow univariate optimization methods

Problem: Expensive, prone to poorly conditioned problems

But: No need for *optimal* step size. Only need a step size that is "good enough". **Reason:** Effort may not pay off, but in some cases slows down performance.

× 0 0 × 0 × ×

Optimization in Machine Learning - 3 / 9

ARMIJO RULE

Inexact line search: Minimize objective "sufficiently" without computing optimal step size exactly

Common condition to guarantee "sufficient" decrease: Armijo rule

ARMIJO RULE

Fix $\gamma_1 \in (0, 1)$. α satisfies **Armijo rule** in **x** for descent direction **d** if

$$f(\mathbf{x} + \alpha \mathbf{d}) \leq f(\mathbf{x}) + \gamma_1 \alpha \nabla f(\mathbf{x})^\top \mathbf{d}.$$

Note: $\nabla f(\mathbf{x})^{\top} \mathbf{d} < 0$ (d *descent* dir.) $\implies f(\mathbf{x} + \alpha \mathbf{d}) < f(\mathbf{x})$.

ARMIJO RULE

Feasibility: For descent direction **d** and $\gamma_1 \in (0, 1)$, there exists $\alpha > 0$ fulfilling Armijo rule. In many cases, Armijo rule guarantees local convergence of GD and is therefore frequently used.

BACKTRACKING LINE SEARCH

Procedure to meet the Armijo rule: Backtracking line search

Idea: Decrease α until Armijo rule is met

Algorithm Backtracking line search

1: Choose initial step size $\alpha = \alpha_{init}$, $0 < \gamma_1 < 1$ and $0 < \tau < 1$

- 2: while $f(\boldsymbol{x} + \alpha \mathbf{d}) > f(\boldsymbol{x}) + \gamma_1 \alpha \nabla f(\boldsymbol{x})^\top \mathbf{d} \mathbf{d} \mathbf{o}$
- 3: Decrease α : $\alpha \leftarrow \tau \cdot \alpha$
- 4: end while

(Source: Martins and Ning. Engineering Design Optimization, 2021.)

BACKTRACKING LINE SEARCH / 2

× × 0 × × ×

WOLFE CONDITIONS

Backtracking is simple and shows good performance in practice

But: Two undesirable scenarios

- **1** Initial step size α_{init} is too large \Rightarrow need multiple evaluations of *f*
- Step size is too small with highly negative slopes

Solution for small step sizes:

- Fix γ_2 with $0 < \gamma_1 < \gamma_2 < 1$.
- α satisfies sufficient curvature condition in x for d if

 $|\nabla f(\mathbf{x} + \alpha \mathbf{d})^{\top} \mathbf{d}| \leq \gamma_2 |\nabla f(\mathbf{x})^{\top} \mathbf{d}|.$

Armijo rule + sufficient curvature condition = Wolfe conditions

× × ×

WOLFE CONDITIONS / 2

Algorithm for finding a Wolfe point (point satisfying Wolfe conditions):

- Bracketing: Find interval containing Wolfe point
- Pinpointing: Find Wolfe point in interval from bracketing

Left: Bracketing. Right: Pinpointing. (Source: Martins and Ning. *EDO*, 2021.)

BRACKETING & PINPOINTING

Example:

- Large initial step size results in quick bracketing but multiple pinpointing steps (left).
- Small initial step size results in multiple bracketing steps but quick pinpointing (**right**).

Source: Martins and Ning. EDO, 2021.

× 0 0 × × ×