Optimization in Machine Learning

First order methods

Step size and optimality

Learning goals
@ Impact of step size
@ Fixed vs. adaptive step size
@ Exact line search
@ Armijo rule & Backtracking
@ Bracketing & Pinpointing

X X

CONTROLLING STEP SIZE: FIXED & ADAPTIVE

lteration t: Choose not only descent direction dlfl, but also step size all

First approach: Fixed step size all = a > 0
@ If o too small, procedure may converge very slowly (left)

@ If « too large, procedure may not converge — “jumps” around optimum (middle)

Adaptive step size alfl can provide better convergence (right)

20
Fl

10
[}
1

20 10 [
-20 =10 a

A L L L

|
| C
P ——|
-20 -10 0

.

Steps of line searches for f(x) = 10x? + x5 /2

Optimization in Machine Learning — 1/9

X X

STEP SIZE CONTROL: DIMINISHING STEP SIZE

How can we adaptively control step size?
A natural way of selecting ol is to decrease its value over time
Example: GD on

Ix? if x| <,
f(x) = .
d-(]x| —1/2-6) otherwise.

0.05 \ 004
0.04 0.03)
stepsize
003
- > 0.02 05
0.02
—— 10
0.01
0.01
—e— 10
0.00 0.00
-1.0 -05 00 05 10 0 5 10 15 20
X t

GD with small constant (red), large constant (green), and diminishing (blue) step size

Optimization in Machine Learning — 2/9

X X

STEP SIZE CONTROL: EXACT LINE SEARCH

Use optimal step size in each iteration:

alll = arg min g(«) = arg min f(x[t] + ozd[t])
OZERZU OtGRZO

Need to solve a univariate optimization
problem in each iteration
= univariate optimization methods

Problem: Expensive, prone to poorly
conditioned problems

But: No need for optimal step size. Only
need a step size that is “good enough”.

Reason: Effort may not pay off, but in *
some cases slows down performance. :

g(a)

003 004
a

Optimization in Machine Learning — 3/9

ARMIJO RULE

f(x+ad)

tapered tangent
T--L__viaO0f(x)'d

Armijo rule holds

Inexact line search: Minimize objective “sufficiently” without computing
optimal step size exactly

Common condition to guarantee “sufficient” decrease: Armijo rule

Optimization in Machine Learning — 4/9

X X

ARMIJO RULE

f(x+a d)

tapered tangent
Tt~ _viaOf(x)'d

Armijo rule holds

Fix v1 € (0,1). « satisfies Armijo rule in x for descent direction d if
f(x + ad) < f(x) + y1aVF(x) " d.

Note: V£(x)"d < 0 (d descent dir.) = f(x + ad) < f(x).

Optimization in Machine Learning — 4/9

X X

ARMIJO RULE

f(x+a d)

tapered tangent
T--L__viaO0f(x)'d

Armijo rule holds

Feasibility: For descent direction d and ¢ € (0, 1), there exists « > 0
fulfilling Armijo rule. In many cases, Armijo rule guarantees local
convergence of GD and is therefore frequently used.

Optimization in Machine Learning — 4/9

X X

BACKTRACKING LINE SEARCH

Procedure to meet the Armijo rule: Backtracking line search
Idea: Decrease « until Armijo rule is met

Algorithm Backtracking line search

1: Choose initial step size & = ainit, 0 < 1 < 1and0 < 7 < 1
2: while f(x + ad) > f(x) +y1aVf(x) "d do

3: Decrease a: o +— 7 - «

4: end while

30 x

20 + 20

10 10

(Source: Martins and Ning. Engineering Design Optimization, 2021.)

Optimization in Machine Learning — 5/9

X X

BACKTRACKING LINE SEARCH /2

Optimization in Machine Learning — 6 /9

X X

WOLFE CONDITIONS

Backtracking is simple and shows good performance in practice
But: Two undesirable scenarios
@ |Initial step size ainit is too large = need multiple evaluations of f
© Step size is too small with highly negative slopes
Solution for small step sizes:
@ Fix o with0 < vy < 72 < 1.
@ « satisfies sufficient curvature condition in x for d if

|VF(x + ad) "d| < 72|VF(x)"d|

Armijo rule + sufficient curvature condition = Wolfe conditions

Optimization in Machine Learning — 7/9

X X

WOLFE CONDITIONS /2

Algorithm for finding a Wolfe point (point satisfying Wolfe conditions):
@ Bracketing: Find interval containing Wolfe point
© Pinpointing: Find Wolfe point in interval from bracketing

Left: Bracketing. Right: Pinpointing.
(Source: Martins and Ning. EDO, 2021.)

Optimization in Machine Learning — 8/9

X X

BRACKETING & PINPOINTING

Example:
@ Large initial step size results in quick bracketing but multiple

pinpointing steps (left).
@ Small initial step size results in multiple bracketing steps but quick

pinpointing (right).

30 x

Bracketing] o
20] 20 + i Bracketing

>
[—
) i i 10 . .
1 > Pinpointing <~ Pinpointing
0 0
10
12

a Qinit init

Source: Martins and Ning. EDO, 2021.

Optimization in Machine Learning — 9/9

