Optimization in Machine Learning

First order methods
Adam and friends

Learning goals
@ Adaptive step sizes
@ AdaGrad
@ RMSProp
@ Adam

X X

ADAPTIVE STEP SIZES

@ Step size is probably the most important control parameter

@ Has strong influence on performance

@ Natural to use different step size for each input individually and

automatically adapt them

1

NN
N
N

7

‘gl‘!_l!

N
S

\%».{!51

o

T
10

Optimization in Machine Learning — 1/ 11

X X

ADAGRAD

@ AdaGrad adapts step sizes by scaling them inversely proportional
to square root of the sum of the past squared derivatives

e Inputs with large derivatives get smaller step sizes

e Inputs with small derivatives get larger step sizes

@ Accumulation of squared gradients can result in premature small
step sizes (Goodfellow et al., 2016)

Optimization in Machine Learning — 2/ 11

X X

ADAGRAD /2

Algorithm AdaGrad

1: require Global step size o
2: require Initial parameter 6
3: require Small constant 3, perhaps 10~7, for numerical stability
4: Initialize gradient accumulation variable r = 0
5: while stopping criterion not met do
6: Sample minibatch of m examples from the training set {x("), ... %(™}
7 Compute gradient estimate: g < Vg > L(0, f (x | 0))
8: Accumulate squared gradientr<—r+g® g
9: Compute update: VO = —ﬁfﬁ © @ (operations element-wise)
10: Apply update: 8 < 6 + VO
11: end while
©: element-wise product (Hadamard)

Optimization in Machine Learning — 3/ 11

X X

RMSPROP

@ Modification of AdaGrad
@ Resolves AdaGrad'’s radically diminishing step sizes.

@ Gradient accumulation is replaced by exponentially weighted
moving average

@ Theoretically, leads to performance gains in non-convex scenarios

@ Empirically, RMSProp is a very effective optimization algorithm.
Particularly, it is employed routinely by DL practitioners.

Optimization in Machine Learning — 4/ 11

X X

RMSPROP /2

Algorithm RMSProp x
1: require Global step size o and decay rate p € [0, 1)
2: require Initial parameter 0 x
3: require Small constant /3, perhaps 1078, for numerical stability
4: Initialize gradient accumulation variable r = 0
5: while stopping criterion not met do X X
6: Sample minibatch of m examples from the training set {x('), ... %(™}
7. Compute gradient estimate: § <~ ~Vy >, L (y(")7 f ()?(") | 0))
8: Accumulate squared gradientr < pr+ (1 —p)g © @
9: Compute update: VO = _Bf\ﬁ ©g
10: Apply update: 8 + 0 + VO
11: end while

Optimization in Machine Learning — 5/ 11

ADAM

@ Adaptive Moment Estimation also has adaptive step sizes
@ Uses the 1st and 2nd moments of gradients
o Keeps an exponentially decaying average of past gradients
(1st moment)
o Like RMSProp, stores an exp-decaying avg of past squared
gradients (2nd moment)
e Can be seen as combo of RMSProp + momentum.

Optimization in Machine Learning — 6/ 11

X X

ADAM /2

Algorithm Adam

1: require Global step size o (suggested default: 0.001)
2: require Exponential decay rates for moment estimates, py and p» in [0, 1) (suggested de-
faults: 0.9 and 0.999 respectively)
3: require Small constant 3 (suggested default 10~8)
4: require Initial parameters 0
5: Initialize time step t = 0
6: Initialize 1st and 2nd moment variables sl% = 0, rl% = 0
7: while stopping criterion not met do
8: t—t+1
9: Sample a minibatch of m examples from the training set {)?(1), R)?(m)}
10: Compute gradient estimate: gl lmVQ L (y(’), f (5?(") | 0))
11: Update biased first moment estimate: sl < pysli=1 4+ (1 — p;)gl!
12: Update biased second moment estimate: rlfl «— pprl!=11 4+ (1 — po)glt! © glf
13: Correct bias in first moment: § < 15_[1,
1
14: Correct bias in second moment: ¥ < 1'_[1,
2
. . _ &
15: Compute update: VO = —a Jiis
16: Apply update: @ < 6 + VO
17: end while

Optimization in Machine Learning — 7/ 11

X X

ADAM /3

@ Initializes moment variables s and r with zero = Bias towards zero

Efst] # B[g] and B[] B © §!7)
(IE calculated over minibatches)
@ Indeed: Unrolling s!! yields
s =0
st = pist 4 (1 = p)g" = (1 - p1)g!"
s = pisl" + (1= p1)§® = pi(1 = p1)§" + (1 — p1)g"
st = pisf (1 p)g® = 57(1 — p1)8™ + i (1 —)8 + (1 — p1)§"

e Therefore: sl = (1 — py) S0, p!~'gll.
@ Note: Contributions of past Q[’] decreases rapidly

Optimization in Machine Learning — 8/ 11

X X

ADAM /4

@ We continue with

Els'] = E[(1 - p1)) pi™'8"]

i=1

=Bg")(1 - p) s +C

= B0 -) +¢,

where we approximated gl by gl!l. The resulting error is put in ¢
and be kept small due to the exponential weights of past gradients.

@ Therefore: sl!l is a biased estimator of gl
@ But bias vanishes for t — oo (p} — 0)

@ Ignoring ¢, we correct for the bias by §l1 = 7(1i[1,)
1
(i

Sl =
@ Analogously: ¥ (=)

Optimization in Machine Learning — 9/ 11

X X

COMPARISON OF OPTIMIZERS: ANIMATION

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

0.5 10-10

Credits: Dettmers (2015) and Radford

Comparison of SGD optimizers near saddle point.
Left: After start. Right: Later.
All methods accelerate compared to vanilla SGD.
Best is RMSProp, then AdaGrad. (Adam is missing here.)

Optimization in Machine Learning — 10/ 11

X X

https://giphy.com/embed/SJVFO3IcVC0M0
https://giphy.com/embed/SJVFO3IcVC0M0
https://giphy.com/embed/SJVFO3IcVC0M0

COMPARISON ON QUADRATIC FORM

15 -|—=— sGD ——————— 1
Momentum
Adam

SGD vs. SGD with Momentum vs. Adam on a quadratic form.

Optimization in Machine Learning — 11/ 11

X X

