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ADAPTIVE STEP SIZES

Step size is probably the most important control parameter

Has strong influence on performance

Natural to use different step size for each input individually and
automatically adapt them
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ADAGRAD

AdaGrad adapts step sizes by scaling them inversely proportional
to square root of the sum of the past squared derivatives

Inputs with large derivatives get smaller step sizes

Inputs with small derivatives get larger step sizes

Accumulation of squared gradients can result in premature small
step sizes (Goodfellow et al., 2016)
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ADAGRAD / 2

Algorithm AdaGrad

1: require Global step size α
2: require Initial parameter θ
3: require Small constant β, perhaps 10−7, for numerical stability
4: Initialize gradient accumulation variable r = 0
5: while stopping criterion not met do
6: Sample minibatch of m examples from the training set {x̃(1), . . . , x̃(m)}
7: Compute gradient estimate: ĝ← 1

m∇θ

∑
i L

(
y (i), f

(
x̃(i) | θ

))
8: Accumulate squared gradient r← r + ĝ⊙ ĝ
9: Compute update: ∇θ = − α

β+
√

r
⊙ ĝ (operations element-wise)

10: Apply update: θ ← θ +∇θ
11: end while

⊙: element-wise product (Hadamard)
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RMSPROP

Modification of AdaGrad

Resolves AdaGrad’s radically diminishing step sizes.

Gradient accumulation is replaced by exponentially weighted
moving average

Theoretically, leads to performance gains in non-convex scenarios

Empirically, RMSProp is a very effective optimization algorithm.
Particularly, it is employed routinely by DL practitioners.
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RMSPROP / 2

Algorithm RMSProp

1: require Global step size α and decay rate ρ ∈ [0, 1)
2: require Initial parameter θ
3: require Small constant β, perhaps 10−6, for numerical stability
4: Initialize gradient accumulation variable r = 0
5: while stopping criterion not met do
6: Sample minibatch of m examples from the training set {x̃(1), . . . , x̃(m)}
7: Compute gradient estimate: ĝ← 1

m∇θ

∑
i L

(
y (i), f

(
x̃(i) | θ

))
8: Accumulate squared gradient r← ρr + (1− ρ)ĝ⊙ ĝ
9: Compute update: ∇θ = − α

β+
√

r
⊙ ĝ

10: Apply update: θ ← θ +∇θ
11: end while
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ADAM

Adaptive Moment Estimation also has adaptive step sizes

Uses the 1st and 2nd moments of gradients

Keeps an exponentially decaying average of past gradients
(1st moment)
Like RMSProp, stores an exp-decaying avg of past squared
gradients (2nd moment)
Can be seen as combo of RMSProp + momentum.
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ADAM / 2

Algorithm Adam
1: require Global step size α (suggested default: 0.001)
2: require Exponential decay rates for moment estimates, ρ1 and ρ2 in [0, 1) (suggested de-

faults: 0.9 and 0.999 respectively)
3: require Small constant β (suggested default 10−8)
4: require Initial parameters θ
5: Initialize time step t = 0
6: Initialize 1st and 2nd moment variables s[0] = 0, r[0] = 0
7: while stopping criterion not met do
8: t ← t + 1
9: Sample a minibatch of m examples from the training set {x̃(1), . . . , x̃(m)}
10: Compute gradient estimate: ĝ[t] ← 1

m∇θ
∑

i L
(

y(i), f
(

x̃(i) | θ
))

11: Update biased first moment estimate: s[t] ← ρ1s[t−1] + (1− ρ1)ĝ[t]

12: Update biased second moment estimate: r[t] ← ρ2r[t−1] + (1− ρ2)ĝ[t] ⊙ ĝ[t]

13: Correct bias in first moment: ŝ← s[t]

1−ρt
1

14: Correct bias in second moment: r̂← r[t]

1−ρt
2

15: Compute update: ∇θ = −α ŝ√
r̂+β

16: Apply update: θ ← θ +∇θ
17: end while
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ADAM / 3

Initializes moment variables s and r with zero⇒ Bias towards zero

E[s[t]] ̸= E[ĝ[t]] and E[r[t]] ̸= E[ĝ[t] ⊙ ĝ[t]]

(E calculated over minibatches)

Indeed: Unrolling s[t] yields

s[0] = 0

s[1] = ρ1s[0] + (1 − ρ1)ĝ
[1] = (1 − ρ1)ĝ

[1]

s[2] = ρ1s[1] + (1 − ρ1)ĝ
[2] = ρ1(1 − ρ1)ĝ

[1] + (1 − ρ1)ĝ
[2]

s[3] = ρ1s[2] + (1 − ρ1)ĝ
[3] = ρ2

1(1 − ρ1)ĝ
[1] + ρ1(1 − ρ1)ĝ

[2] + (1 − ρ1)ĝ
[3]

Therefore: s[t] = (1− ρ1)
∑t

i=1 ρ
t−i
1 ĝ[i].

Note: Contributions of past ĝ[i] decreases rapidly
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ADAM / 4

We continue with

E[s[t]] = E[(1 − ρ1)
t∑

i=1

ρt−i
1 ĝ[i]]

= E[ĝ[t]](1 − ρ1)
t∑

i=1

ρt−i
1 + ζ

= E[ĝ[t]](1 − ρt
1) + ζ,

where we approximated ĝ[i] by ĝ[t]. The resulting error is put in ζ
and be kept small due to the exponential weights of past gradients.

Therefore: s[t] is a biased estimator of ĝ[t]

But bias vanishes for t →∞ (ρt
1 → 0)

Ignoring ζ, we correct for the bias by ŝ[t] = s[t]

(1−ρt
1)

Analogously: r̂[t] = r[t]

(1−ρt
2)
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COMPARISON OF OPTIMIZERS: ANIMATION

Credits: Dettmers (2015) and Radford

Comparison of SGD optimizers near saddle point.
Left: After start. Right: Later.

All methods accelerate compared to vanilla SGD.
Best is RMSProp, then AdaGrad. (Adam is missing here.)
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https://giphy.com/embed/SJVFO3IcVC0M0
https://giphy.com/embed/SJVFO3IcVC0M0
https://giphy.com/embed/SJVFO3IcVC0M0


COMPARISON ON QUADRATIC FORM

SGD vs. SGD with Momentum vs. Adam on a quadratic form.
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