Optimization in Machine Learning

First order methods
SGD Further Details

Learning goals
@ Decreasing step size for SGD
@ Stopping rules

1 @ SGD with momentum
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SGD WITH CONSTANT STEP SIZE

Example: SGD with constant step size.
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Erratic behavior later (variance too big).
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SGD WITH DECREASING STEP SIZE

@ Idea: Decrease step size to reduce magnitude of erratic steps.

@ Trade-off:

o if step size al!l decreases slowly, large erratic steps
o if step size decreases too fast, performance is impaired

@ SGD converges for sufficiently smooth functions if
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(“how much noise affects you” by “how far you can get”).
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SGD WITH DECREASING STEP SIZE /2
@ Popular solution: step size fulfilling ol € O(1/1).
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Example continued. Step size all = 0.2/t.

@ Often not working well in practice: step size gets small quite fast.
@ Alternative: ol € O(1//1)
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ADVANCED STEP SIZE CONTROL

Why not Armijo-based step size control?

@ Backtracking line search or other approaches based on Armijo rule
usually not suitable: Armijo condition

g(x+ ad) < g(x) + 11aVg(x)'d

requires evaluating full gradient.
@ But SGD is used to avoid expensive gradient computations.

@ Research aims at finding inexact line search methods that provide
better convergence behaviour, e.g., Vaswani et al., Painless
Stochastic Gradient: Interpolation, Line-Search, and Convergence
Rates. NeurlPS, 2019.
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MINI-BATCHES

@ Reduce noise by increasing batch size m for better approximation
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@ Usually, the batch size is limited by computational resources (e.g.,
how much data you can load into the memory)
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Example continued. Batch size m =1 vs. m = 5.

Optimization in Machine Learning — 5/8



STOPPING RULES FOR SGD

@ For GD: We usually stop when gradient is close to 0 (i.e., we are
close to a stationary point)

@ For SGD: individual gradients do not necessarily go to zero, and
we cannot access full gradient.

@ Practicable solution for ML:

o Measure the validation set error after T iterations
e Stop if validation set error is not improving
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SGD AND ML

General remarks:

@ SGD is a variant of GD

@ SGD particularly suitable for large-scale ML when evaluating
gradient is too expensive / restricted by computational resources

@ SGD and variants are the most commonly used methods in
modern ML, for example:

o Linear models
Note that even for the linear model and quadratic loss, where a closed form
solution is available, SGD might be used if the size n of the dataset is too
large and the design matrix does not fit into memory.

o Neural networks

e Support vector machines

o ...
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SGD WITH MOMENTUM

SGD is usually used with momentum due to reasons mentioned in
previous chapters.

Algorithm Stochastic gradient descent with momentum

. require step size o and momentum ¢

: require initial parameter x and initial velocity v

: while stopping criterion not met do

Sample mini-batch of m examples

Compute gradient estimate Vg(x) using mini-batch
Compute velocity update: v + pr — aVg(x)
Apply update: x < x + v

: end while

O N2aR N2
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