Optimization in Machine Learning

First order methods
Gradient descent

Learning goals

@ lterative Descent / Line Search
Descent directions
GD
ERM with GD
Pseudoresiduals
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ITERATIVE DESCENT

Let f be the height of a mountain depending on the geographic O O X
coordinates (xi, x2)

f:R2 =R, flxq,x)=y. x O
Goal: Reach the valley x x
argxmin f(x)
Central idea: Repeat

@ At current location x € R? search
for descent direction d € R?

© Move along d until f ,sufficiently*
reduces (step size control) and
update location

"Walking down the hill, towards the
valley."
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ITERATIVE DESCENT

Let f : RY — R continuously differentiable.

Definition: d € R? is a descent direction in x if

Daf(x) = V£(x)"d < 0 (neg. directional derivative)

Angle between V£(x) and d must be € (90°,270°).
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ITERATIVE DESCENT /2

Algorithm lterative Descent / Line search

1: Starting point x[% € R

2: while Stopping criterion not met do

3. Calculate a descent direction dl! for current x!!

4. Find ol sit. F(xI11) < £(x[0) for xIH+1] = x] - oMl .
5. Update x[t+1] = x[1 4 o[04l

6: end while

NB: Terminology is sometimes ambiguous: “line search” can refer to Step 4 (selecting the step size that decreases f(x)) and can
mean umbrella term for iterative descent algorithms.

Key questions:
@ How to choose d!!l (now)
@ How to choose alll (later)
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GRADIENT DESCENT
Properties of gradient: O O X

@ V{(x): direction of greatest increase
e —V{(x): direction of greatest decrease X O

Using d = —V£(x) is called gradient descent. X X
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GD for f(x1, %) = —sin(x1) - 5~ exp ((x2 — 7/2)?) with sensibly chosen step size all.
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GD AND MULTIMODAL FUNCTIONS

Outcome will depend on start point.
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OPTIMIZE LS LINEAR REGRESSION WITH GD

LetD = ((x(‘),y(”) . (x(”),y(”))) and minimize

Remp(e) _ i (eTx(i) _ y(i))z
i=1

NB: For illustration, we use GD even though closed-form solution exists. GD-like (more
adv.) approaches like this MIGHT make sense for large data, though.

Gradient: VoRem(0) = 8Remp 22 ( ()) x?
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ERM FOR NN WITH GD

Let D = ((x(V,yM) ..., (x(",y(M)), with y = x2 + xZ and minimize O O X
n
N\ 2
Remp(0) = f(x| ) - y?
> ) X | O
where f(x | ) is a neural network with 2 hidden layers (2 units each). x x
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ERM FOR NN WITH GD /2
After 10 iters of GD: O O x

X X
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ERM FOR NN WITH GD /3
After 100 iters of GD:
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ERM FOR NN WITH GD /4
After 300 iters of GD (note the zig-zag-behavior after iter. 200): O O X
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GD FOR ERM: PSEUDORESIDUALS

Gradient for ERM problem: x
o3 L(y0r(x010)) o o (401 (x9)) or (x| o)
| ORamp(60) ol | (0 (x0)) o (<010 >
00 00 — of 00
T=1 \———
pseudo residual 7 (f)
@ pseudo residuals tell us how to distort f (x(’)) to achieve greatest decrease of x x
L (y(")7 f (x(’))) (best pointwise update)
Bf(x(i) | 9) . . .
@ — 5 tells us how to modify & accordingly and wiggle model output

@ GD step sums up these modifications across all observations i

NB: Pseudo-residuals 7(f) match , °
usual residuals for L2 loss: >
0
AL(y.f(x) _ 1 Oy — 1 .
of 20 |y
2 1 0 1 2
=y —f(x) X
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