Optimization in Machine Learning

First order methods Gradient descent

Learning goals

- Iterative Descent / Line Search
- Descent directions
- GD
- ERM with GD
- Pseudoresiduals

ITERATIVE DESCENT

Let f be the height of a mountain depending on the geographic coordinates (x_1, x_2)

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x_1, x_2) = y.$$

Goal: Reach the valley

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} f(\mathbf{x})$$

Central idea: Repeat

- At current location $\mathbf{x} \in \mathbb{R}^d$ search for **descent direction d** $\in \mathbb{R}^d$
- Move along d until f "sufficiently" reduces (step size control) and update location

"Walking down the hill, towards the valley."

ITERATIVE DESCENT

Let $f: \mathbb{R}^d \to \mathbb{R}$ continuously differentiable.

Definition: $\mathbf{d} \in \mathbb{R}^d$ is a descent direction in \mathbf{x} if

$$D_{\mathbf{d}}f(\mathbf{x}) = \nabla f(\mathbf{x})^T \mathbf{d} < 0$$
 (neg. directional derivative)

Angle between $\nabla f(\mathbf{x})$ and **d** must be $\in (90^{\circ}, 270^{\circ})$.

ITERATIVE DESCENT / 2

Algorithm Iterative Descent / Line search

- 1: Starting point $\mathbf{x}^{[0]} \in \mathbb{R}^d$
- 2: while Stopping criterion not met do
- 3: Calculate a descent direction $\mathbf{d}^{[t]}$ for current $\mathbf{x}^{[t]}$
- 4: Find $\alpha^{[t]}$ s.t. $f(\mathbf{x}^{[t+1]}) < f(\mathbf{x}^{[t]})$ for $\mathbf{x}^{[t+1]} = \mathbf{x}^{[t]} + \alpha^{[t]}\mathbf{d}^{[t]}$.
- 5: Update $\mathbf{x}^{[t+1]} = \mathbf{x}^{[t]} + \alpha^{[t]} \mathbf{d}^{[t]}$
- 6: end while

NB: Terminology is sometimes ambiguous: "line search" can refer to Step 4 (selecting the step size that decreases $f(\mathbf{x})$) and can mean umbrella term for iterative descent algorithms.

Key questions:

- How to choose $\mathbf{d}^{[t]}$ (now)
- How to choose $\alpha^{[t]}$ (later)

GRADIENT DESCENT

Properties of gradient:

- $\nabla f(\mathbf{x})$: direction of greatest increase
- $-\nabla f(\mathbf{x})$: direction of greatest decrease

Using $\mathbf{d} = -\nabla f(\mathbf{x})$ is called **gradient descent**.

GD for $f(x_1, x_2) = -\sin(x_1) \cdot \frac{1}{2\pi} \exp((x_2 - \pi/2)^2)$ with sensibly chosen step size $\alpha^{[t]}$.

GD AND MULTIMODAL FUNCTIONS

Outcome will depend on start point.

OPTIMIZE LS LINEAR REGRESSION WITH GD

Let
$$\mathcal{D} = \left(\left(\mathbf{x}^{(1)}, y^{(1)} \right), \dots, \left(\mathbf{x}^{(n)}, y^{(n)} \right) \right)$$
 and minimize
$$\mathcal{R}_{\text{emp}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} - y^{(i)} \right)^{2}$$

NB: For illustration, we use GD even though closed-form solution exists. GD-like (more adv.) approaches like this MIGHT make sense for large data, though.

Gradient:
$$\nabla_{\boldsymbol{\theta}} \mathcal{R}_{emp}(\boldsymbol{\theta}) = \frac{\partial \mathcal{R}_{emp}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = -\sum_{i=1}^{n} 2 \cdot \left(y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right) \mathbf{x}^{(i)}$$

ERM FOR NN WITH GD

Let
$$\mathcal{D} = ((\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)}))$$
, with $y = x_1^2 + x_2^2$ and minimize
$$\mathcal{R}_{\text{emp}}(\theta) = \sum_{i=1}^n \left(f(\mathbf{x} \mid \theta) - y^{(i)} \right)^2$$

where $f(\mathbf{x} \mid \boldsymbol{\theta})$ is a neural network with 2 hidden layers (2 units each).

ERM FOR NN WITH GD / 2

After 10 iters of GD:

ERM FOR NN WITH GD / 3

After 100 iters of GD:

ERM FOR NN WITH GD /4

After 300 iters of GD (note the zig-zag-behavior after iter. 200):

GD FOR ERM: PSEUDORESIDUALS

Gradient for ERM problem:

$$-\frac{\partial \mathcal{R}_{\text{emp}}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = -\frac{\partial \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)}{\partial \boldsymbol{\theta}} = -\sum_{i=1}^{n} \underbrace{\frac{\partial L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)}{\partial f}}_{\text{pseudo residual } \tilde{r}^{(i)}(f)} \underbrace{\frac{\partial f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}}_{\text{pseudo residual } \tilde{r}^{(i)}(f)}$$

- **pseudo residuals** tell us how to distort $f\left(\mathbf{x}^{(i)}\right)$ to achieve greatest decrease of $L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$ (best pointwise update)
- $\frac{\partial f(\mathbf{x}^{(i)} \mid \theta)}{\partial \theta}$ tells us how to modify θ accordingly and wiggle model output
- GD step sums up these modifications across all observations i

NB: Pseudo-residuals $\tilde{r}(f)$ match usual residuals for L2 loss:

$$\frac{\partial L(y, f(\mathbf{x}))}{\partial f} = \frac{1}{2} \left. \frac{\partial (y - f)^2}{\partial f} \right|_{f = f(\mathbf{x})}$$
$$= y - f(\mathbf{x})$$

