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ITERATIVE DESCENT

Let f be the height of a mountain depending on the geographic
coordinates (x1, x2)

f : R2 → R, f (x1, x2) = y .

Goal: Reach the valley

argmin
x

f (x)

Central idea: Repeat

1 At current location x ∈ Rd search
for descent direction d ∈ Rd

2 Move along d until f „sufficiently“
reduces (step size control) and
update location

"Walking down the hill, towards the

valley."
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ITERATIVE DESCENT

Let f : Rd → R continuously differentiable.

Definition: d ∈ Rd is a descent direction in x if

Ddf (x) = ∇f (x)T d < 0 (neg. directional derivative)
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Angle between ∇f (x) and d must be ∈ (90◦, 270◦).
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ITERATIVE DESCENT / 2

Algorithm Iterative Descent / Line search

1: Starting point x[0] ∈ Rd

2: while Stopping criterion not met do
3: Calculate a descent direction d[t] for current x[t]

4: Find α[t] s.t. f (x[t+1]) < f (x[t]) for x[t+1] = x[t] + α[t]d[t] .
5: Update x[t+1] = x[t] + α[t]d[t]

6: end while

NB: Terminology is sometimes ambiguous: “line search” can refer to Step 4 (selecting the step size that decreases f (x)) and can
mean umbrella term for iterative descent algorithms.

Key questions:

How to choose d[t] (now)

How to choose α[t] (later)
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GRADIENT DESCENT

Properties of gradient:

∇f (x): direction of greatest increase

−∇f (x): direction of greatest decrease

Using d = −∇f (x) is called gradient descent.

GD for f (x1, x2) = − sin(x1) · 1
2π exp

(
(x2 − π/2)2

)
with sensibly chosen step size α[t].
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GD AND MULTIMODAL FUNCTIONS

Outcome will depend on start point.
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alpha=1e−04, steps=100
alpha=1e−04, steps=100
alpha=1e−04, steps=100

100 iters of GD with const α = 10−4.
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OPTIMIZE LS LINEAR REGRESSION WITH GD
Let D =

((
x(1), y (1)

)
, . . . ,

(
x(n), y (n)

))
and minimize

Remp(θ) =
n∑

i=1

(
θ⊤x(i) − y (i)

)2

NB: For illustration, we use GD even though closed-form solution exists. GD-like (more

adv.) approaches like this MIGHT make sense for large data, though.

Gradient: ∇θRemp(θ) =
∂Remp(θ)

∂θ
= −

n∑
i=1

2 ·
(

y (i) − θ⊤x(i)
)
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ERM FOR NN WITH GD

Let D =
((

x(1), y (1)
)
, . . . ,

(
x(n), y (n)

))
, with y = x2

1 + x2
2 and minimize

Remp(θ) =
n∑

i=1

(
f (x | θ)− y (i)

)2

where f (x | θ) is a neural network with 2 hidden layers (2 units each).
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ERM FOR NN WITH GD / 2

After 10 iters of GD:

x1
x2

y

15.8 16.2 16.6
60

80

100

120

0 100 200 300
epoch

lo
ss

© Optimization in Machine Learning – 8 / 11



ERM FOR NN WITH GD / 3

After 100 iters of GD:
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ERM FOR NN WITH GD / 4

After 300 iters of GD (note the zig-zag-behavior after iter. 200):
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GD FOR ERM: PSEUDORESIDUALS
Gradient for ERM problem:

−∂Remp(θ)

∂θ
= −

∂
n∑

i=1
L
(

y (i), f
(

x(i) | θ
))

∂θ
= −

n∑
i=1

∂L
(

y (i), f
(

x(i)
))

∂f︸ ︷︷ ︸
pseudo residual r̃ (i)(f )

∂f
(

x(i) | θ
)

∂θ

pseudo residuals tell us how to distort f
(

x(i)
)

to achieve greatest decrease of

L
(

y (i), f
(

x(i)
))

(best pointwise update)

∂f(x(i) | θ)
∂θ

tells us how to modify θ accordingly and wiggle model output

GD step sums up these modifications across all observations i

NB: Pseudo-residuals r̃ (f ) match
usual residuals for L2 loss:

∂L (y , f (x))
∂f

=
1
2

∂(y − f )2

∂f

∣∣∣∣
f=f (x)

= y − f (x)
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