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Optimization Problems
Other optimization problems

Learning goals
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Noisy
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OTHER CLASSES OF OPTIMIZATION PROBLEMS

So far: “nice” (un)constrained problems:

Problem defined on continuous domain S
Analytical objectives (and constraints)

Other characteristics:

Discrete domain S
f black-box: Objective not available in analytical form;
computer program to evaluate

f noisy: Objective can be queried but evaluations are noisy
f (x) = ftrue(x) + ϵ, ϵ ∼ F

f expensive: Single query takes time / resources

f multi-objective: f (x) : S → Rm, f (x) = (f1(x), ..., fm(x))

These make the problem typically much harder to solve!
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EXAMPLE 1: BEST SUBSET SELECTION

Let D =
((

x(i), y (i)
))

1≤i≤n
, x(i) ∈ Rp. Fit LM based on best feature subset.

min
θ∈Θ

(
y (i) − θ⊤x(i)

)2
, ||θ||0 ≤ k

Figure: Source: RPubs, Subset Selection
Methods

Problem characteristics:

White-box: Objective
available in analytical form

Discrete: S is mixed
continuous and discrete

Constrained

The
problem is even NP-hard (Bin et
al., 1997, The Minimum Feature
Subset Selection Problem)!
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EXAMPLE 2: WRAPPER FEATURE SELECTION

Subset sel. can be generalized to any learner I using only features s:

min
s∈{0,1}p

ĜE(I,J , ρ, s),

ĜE general. err. with metric ρ and estim. with resampling splits J

Problem characteristics:

black box
eval by program

S is discrete / binary

expensive
1 eval: 1 or multiple ERM(s)!

noisy
uses data / resampling

NB: Less features can be
better in prediction (overfitting)
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EXAMPLE 3: FEATURE SEL. (MULTIOBJECTIVE)

Feature selection is usually inherently multi-objective, with model
sparsity as a 2nd trade-off target:

min
s∈{0,1}p

(
ĜE(I,J , ρ, s),

∑p

i=1
si

)
.

ĜE general. err. with metric ρ and estim. with resampling splits J

Multiobjective

black box
eval by program

S is discrete / binary

expensive
1 eval: 1 or multiple ERM(s)!

noisy
uses data / resampling
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EXAMPLE 4: HYPERPARAMETER OPTIMIZATION

Learner I usually configurable by hyperparameters λ ∈ Λ.
Find best HP configuration λ∗

λ∗ ∈ argminλ∈Λ c(λ) = argmin ĜE(I,J , ρ,λ)

ĜE general. err. with metric ρ and estim. with resampling splits J

XGBoost HP landscape; source:

ceur-ws.org/Vol-2846/paper22.pdf
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EXAMPLE 4: HYPERPARAMETER OPTIMIZATION
/ 2

Solving
λ∗ ∈ argmin

λ∈Λ
c(λ)

is very challenging:

c black box
eval by progrmm

expensive
1 eval: 1 or multiple ERM(s)!

noisy
uses data / resampling

the search space Λ might be mixed
continuous, integer, categ. or hierarchical

XGBoost HP landscape; source:

ceur-ws.org/Vol-2846/paper22.pdf
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MORE BLACK-BOX PROBLEMS

Black-box problems from engineering: oil well placement

The goal is to determine the optimal
locations and operation parameters for
wells in oil reservoirs

Basic premise: achieving maximum
revenue from oil while minimizing
operating costs

In addition, the objective function is
subject to complex combinations of
geological, economical, petrophysical
and fluiddynamical constraints

Each function evaluation requires several
computationally expensive reservoir
simulations while taking uncertainty in the
reservoir description into account

Oil saturation at various

depths with possible location

of wells.

Source: https://doi.org/10.1007/

s13202-019-0710-1
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