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CONSTRAINED OPTIMIZATION PROBLEM

min
x∈S

f (x), with f : S → R.

Constrained, if domain S is restricted: S⊊Rd .

Convex if f convex function and S convex set
Typically S is defined via functions called constraints

S := {x ∈ Rd | gi(x) ≤ 0, hj(x) = 0 ∀ i, j}, where

gi : R
d → R, i = 1, ..., k are called inequality constraints,

hj : R
d → R, j = 1, ..., l are called equality constraints.

Equivalent formulation:

min f (x)

such that gi(x) ≤ 0 for i = 1, . . . , k

hj(x) = 0 for j = 1, . . . , l.
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LINEAR PROGRAM (LP)
f linear s.t. linear constraints. Standard form:

min
x∈Rd

c⊤x

s.t. Ax ≥ b

x ≥ 0

for c ∈ Rd ,A ∈ Rk×d and b ∈ Rk .

Visualization of constraints of 2D and 3D linear program (Source right figure:

Wikipedia).
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QUADRATIC PROGRAM (QP)

f quadratic form s.t. linear constraints. Standard form:

min
x∈Rd

1
2

x⊤Ax + b⊤x + c

s.t. Ex ≤ f

Gx = h

A ∈ Rd×d ,b ∈ Rd , c ∈ R, E ∈ Rk×d , f ∈ Rk , G ∈ Rl×d , h ∈ Rl .

Visualization of quadratic objective (dashed) over linear constraints (grey). Source: Ma,

Signal Processing Optimization Techniques, 2015.
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CONVEX PROGRAM (CP)

f convex, convex inequality constraints, linear equality constraints.
Standard form:

min
x∈Rd

f (x)

s.t. gi(x) ≤ 0, i = 1, ..., k

Ax = b

for A ∈ Rl×d and b ∈ Rl .

Convex program (left) vs. nonconvex program (right). Source: Mathworks.
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FURTHER TYPES

Quadratically constrained
linear program (QCLP) and
quadratically constrained
quadratic program
(QCQP).
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EXAMPLE 1: UNIT CIRCLE

min f (x1, x2) = x1 + x2

s.t. h(x1, x2) = x2
1 + x2

2 − 1 = 0

f , h smooth. Problem not convex (S is not a convex set).

Note: If the constraint is replaced by g(x1, x2) = x2
1 + x2

2 − 1 ≤ 0, the problem is a

convex program, even a quadratically constrained linear program (QCLP).
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EXAMPLE 2: MAXIMUM LIKELIHOOD

Experiment: Draw m balls from a bag with balls of k different colors.
Color j has a probability of pj of being drawn.

The probability to realize the outcome x = (x1, ..., xk), xj being the
number of balls drawn in color j , is:

f (x,m,p) =

{
m!

x1!···xk !
· px1

1 · · · pxk
k if

∑k
i=1 xi = m

0 otherwise

The parameters pj are subject to the following constraints:

0 ≤ pj ≤ 1 for all i
m∑

j=1

pj = 1.
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EXAMPLE 2: MAXIMUM LIKELIHOOD / 2

For a fixed m and a sample D =
(
x(1), ..., x(n)

)
, where

∑k
j=1 x(i)j = m

for all i = 1, ..., n, the negative log-likelihood is:

−ℓ(p) = − log

(
n∏

i=1

m!

x(i)1 ! · · · x(i)k !
· p

x(i)1
1 · · · p

x(i)k
k

)

=
n∑

i=1

− log(m!) +
k∑

j=1

log(x(i)j !)−
k∑

j=1

x(i)j log(pj)


∝ −

n∑
i=1

k∑
j=1

x(i)j log(pj)

f , g, h are smooth.
Convex program: convex(∗) objective + box/linear constraints).

(∗): log is concave, − log is convex, and the sum of convex functions is convex.
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EXAMPLE 3: RIDGE REGRESSION

Ridge regression can be formulated as regularized ERM:

θ̂Ridge = argmin
θ

{
n∑

i=1

(
y (i) − θ⊤x

)2
+ λ||θ||22

}

Equivalently it can be written as constrained optimization problem:

min
θ

n∑
i=1

(
θ⊤x(i) − y (i)

)2

s.t. ∥θ∥2 ≤ t

f , g smooth. Convex program (convex objective, quadratic constraint).
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EXAMPLE 4: LASSO REGRESSION

Lasso regression can be formulated as regularized ERM:

θ̂Lasso = argmin
θ

{
n∑

i=1

(
y (i) − θ⊤x

)2
+ λ||θ||1

}

Equivalently it can be written as constrained optimization problem:

min
θ

n∑
i=1

(
θ⊤x(i) − y (i)

)2

s.t. ∥θ∥1 ≤ t

f smooth, g not smooth. Still convex program.
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EXAMPLE 5: SUPPORT VECTOR MACHINES

The SVM problem can be formulated in 3 equivalent ways: two primal,
and one dual one (we will see later what "dual" means).
Here, we only discuss the nature of the optimization problems. A more thorough

statistical derivation of SVMs is given in “Supervised learning”.

Formulation 1 (primal): ERM with Hinge loss

n∑
i=1

max
(

1 − y (i)f (i), 0
)
+ λ∥θ∥2

2, f (i) := θ⊤x(i)

0

1

2

3

−2 −1 0 1 2
yf(x)

L(
y,

 f(
x)

)

Loss

Hinge
Unconstrained, convex problem

with non-smooth objective
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EXAMPLE 5: SUPPORT VECTOR MACHINES / 2

Formulation 2 (primal): Geometric formulation

Find decision boundary which separates classes with maximum
safety distance

Distance to points closest to decision boundary (“safety margin γ”)
should be maximized
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EXAMPLE 5: SUPPORT VECTOR MACHINES

Formulation 2 (primal): Geometric formulation

min
θ,θ0

1
2
∥θ∥2

s.t. y (i)
(〈

θ, x(i)
〉
+ θ0

)
≥ 1 ∀ i ∈ {1, . . . , n}

Maximize safety margin γ. No

point is allowed to violate safety

margin constraint.

The problem is a QP: Quadratic objective with linear constraints.
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EXAMPLE 5: SUPPORT VECTOR MACHINES

Formulation 2 (primal): Geometric formulation (soft constraints)

min
θ,θ0,ζ(i)

1
2
∥θ∥2 + C

n∑
i=1

ζ(i)

s.t. y (i)
(〈

θ, x(i)
〉
+ θ0

)
≥ 1−ζ(i) ∀ i ∈ {1, . . . , n},

and ζ(i) ≥ 0 ∀ i ∈ {1, . . . , n}.

Maximize safety margin γ.

Margin violations are allowed,

but are minimized.

The problem is a QP: Quadratic objective with linear constraints.
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EXAMPLE 5: SUPPORT VECTOR MACHINES
Formulation 3 (dual): Dualizing the primal formulation

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαj y
(i)y (j)

〈
x(i), x(j)

〉
s.t. 0 ≤ αi ≤ C ∀ i ∈ {1, . . . , n},

n∑
i=1

αi y
(i) = 0

Matrix notation:

max
α∈Rn

α⊤1 − 1
2
α⊤ diag(y) X⊤X diag(y) α

s.t. 0 ≤ αi ≤ C ∀ i ∈ {1, . . . , n}, α⊤y = 0

Kernelization: Replace dot product between x’s with K ij = k(x(i), x(j)), where k(·, ·) is

a positive definite kernel function (⇒ K positive semi-definite).

max
α∈Rn

α⊤1 − 1
2
α diag(y) K diag(y) α

s.t. 0 ≤ αi ≤ C ∀ i ∈ {1, . . . , n}, α⊤y = 0

This is QP with a single affine equality constraint and n box constraints.
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