Optimization in Machine Learning

Optimization Problems
Constrained problems

Learning goals
@ Definition
@ LP, QPR CP
@ Ridge and Lasso
@ Soft-margin SVM




CONSTRAINED OPTIMIZATION PROBLEM

min f(x), with f: S — R.

xeS

@ Constrained, if domain S is restricted: SCRR.
@ Convex if f convex function and S convex set
@ Typically S is defined via functions called constraints

S :={x € RY|gi(x) <0,h(x) =0V1ij}, where

o gi:RY = R,i=1,..., k are called inequality constraints,
o hj: RY - R,j =1, ...,/ are called equality constraints.

Equivalent formulation:

min  f(x)
suchthat  gi(x) <0
hj(x) =0

fori=1,...,k
forj=1,... 1
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LINEAR PROGRAM (LP)
@ flinear s.t. linear constraints. Standard form: O o x

min c'x

€Rd
xs.t. Ax > b x O
x=0 X X

forc € R, Ac R**?and b € R*.

Visualization of constraints of 2D and 3D linear program (Source right figure:
Wikipedia).
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QUADRATIC PROGRAM (QP)

@ f quadratic form s.t. linear constraints. Standard form:

]
min —x'AX+b'x+c
xeR? 2

s.t. Ex<f

Gx=h

AeRdXd7b€Rd?C€R,EERkXd,fGRk,GERIXd,hGRI-

Visualization of quadratic objective (dashed) over linear constraints (grey). Source: Ma,
Signal Processing Optimization Techniques, 2015.
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CONVEX PROGRAM (CP)

@ f convex, convex inequality constraints, linear equality constraints.

Standard form:

i f(x
o ™
s.t. gi(x) <0,i=1,...,k

Ax=0>b

for Ac R"™*9and b € R'.

Convex Objective and Convex Constraints and

Convex program (left) vs. nonconvex program (right). Source: Mathworks.
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FURTHER TYPES

Quadratically constrained
linear program (QCLP) and
quadratically constrained
quadratic program
(QCQP).
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EXAMPLE 1: UNIT CIRCLE
. O 0OX
min f(X1,X2):X1 + Xo
st h(x,x)=x2+x5-1=0 X O

X X

f, h smooth. Problem not convex (S is not a convex set).

Note: If the constraint is replaced by g(xi, x2) = x* 4+ x5 — 1 < 0, the problem is a
convex program, even a quadratically constrained linear program (QCLP).
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EXAMPLE 2: MAXIMUM LIKELIHOOD

Experiment: Draw m balls from a bag with balls of k different colors.
Color j has a probability of p; of being drawn.

The probability to realize the outcome x = (xi, ..., Xk), X; being the
number of balls drawn in color j, is:

Xk . k o
f(x,m’p) — X1| Xk p1 .. -pk If 2121 XI =m
0 otherwise

The parameters p; are subject to the following constraints:

0<p <1 for all

m
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EXAMPLE 2: MAXIMUM LIKELIHOOD /2

For a fixed m and a sample D = (x(1), ..., x("), where Sk
forall i = 1,..., n, the negative log-likelihood is:

/11:m

n - p
m! (0) (0)
—l(p) = —log (H(’)lx(’)lp:(1 ...pzk )
y oox !

i=1 X1
n k k
= > |~ tog(m!)+ Y log(x{"1) = > x" log(p))
i=1 j=1 j=1
n k
x — ij(' log(

f, g, h are smooth.
Convex program: convex®*) objective + box/linear constraints).

(*): log is concave, — log is convex, and the sum of convex functions is convex.
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EXAMPLE 3: RIDGE REGRESSION

Ridge regression can be formulated as regularized ERM:

N n ‘ 2
ORisge = argemin {Z (,V(’) - 9Tx> + )\H9|S}

i=1
Equivalently it can be written as constrained optimization problem:

n

min o7Tx() _ y(0)°
i 20 )

st ||0]2 <t

f, g smooth. Convex program (convex objective, quadratic constraint).
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EXAMPLE 4: LASSO REGRESSION

Lasso regression can be formulated as regularized ERM:

~ n , 2
Olasso = argemin {Z <y(’) - BTX) + >\H0H1}

i=1
Equivalently it can be written as constrained optimization problem:

n

min 6Tx() — )’

st. |0l <t

f smooth, g not smooth. Still convex program.
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EXAMPLE 5: SUPPORT VECTOR MACHINES

The SVM problem can be formulated in 3 equivalent ways: two primal,
and one dual one (we will see later what "dual" means).

Here, we only discuss the nature of the optimization problems. A more thorough
statistical derivation of SVMs is given in “Supervised learning”.

Formulation 1 (primal): ERM with Hinge loss

Y max (1 — ), o) FA0, D= gTxD
i=1

N
L

L )
0ss Unconstrained, convex problem

L(y. f(x))

Hinge with non-smooth objective

[N
L

yf(x)
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EXAMPLE 5: SUPPORT VECTOR MACHINES /2

Formulation 2 (primal): Geometric formulation

@ Find decision boundary which separates classes with maximum
safety distance

@ Distance to points closest to decision boundary (“safety margin v”)
should be maximized
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EXAMPLE 5: SUPPORT VECTOR MACHINES

Formulation 2 (primal): Geometric formulation

1
min 7H0H2
0,0, 2

)

sty (<0,x(’)> +90) >1 Vie{1,...,n}

Maximize safety margin ~. No
point is allowed to violate safety
margin constraint.

The problem is a QP: Quadratic objective with linear constraints.
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EXAMPLE 5: SUPPORT VECTOR MACHINES

Formulation 2 (primal): Geometric formulation (soft constraints)

1 S
in —[8P+cd ¢V
omin, 5ol > ¢
st. y0 <<0,x(’)> + 90) >1-¢ vie{1,...,n},

and ¢D>0 Vie{1,...,n}.

i=1

Maximize safety margin .
Margin violations are allowed,

but are minimized.

The problem is a QP: Quadratic objective with linear constraints.
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EXAMPLE 5: SUPPORT VECTOR MACHINES

Formulation 3 (dual): Dualizing the primal formulation

n n n
1 0 /) )
S 33 Sy (x0.00)
1= 1= =
n R

st. 0<a;<C Vie{t,...,n}, Za,y(’):()
Matrix notation: i=1

1

max a'1— EaT diag(y) X" X diag(y)

st 0<a<C Vie{1,...,n}, a'y=0

Kernelization: Replace dot product between x’s with K; = k(x| x?), where k(-,-) is
a positive definite kernel function (= K positive semi-definite).

T 1 . .
max 1-— Pla diag(y) K diag(y) o

st 0<a<C Vie{l,...,n}, a'y=0

This is QP with a single affine equality constraint and n box constraints.
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