Optimization in Machine Learning

Optimization Problems Constrained problems

Learning goals

- **•** Definition
- LP, QP, CP
- Ridge and Lasso
- **•** Soft-margin SVM

CONSTRAINED OPTIMIZATION PROBLEM

 $\min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x})$, with $f: \mathcal{S} \to \mathbb{R}$.

- **Constrained**, if domain S is restricted: $S \subsetneq \mathbb{R}^d$.
- **Convex** if *f* convex function and *S* convex set
- Typically S is defined via functions called **constraints**

 $\mathcal{S}:=\{\mathbf{x}\in\mathbb{R}^{d}\mid g_{i}(\mathbf{x})\leq0,h_{j}(\mathbf{x})=0\;\forall\;i,j\},$ where

 $g_i:\mathbb{R}^d\rightarrow\mathbb{R},$ $i=1,...,k$ are called inequality constraints, $h_j:\mathbb{R}^d\rightarrow\mathbb{R}, j=1,...,l$ are called equality constraints.

Equivalent formulation:

$$
\begin{array}{ll}\n\text{min} & f(\mathbf{x}) \\
\text{such that} & g_i(\mathbf{x}) \le 0 \\
& h_j(\mathbf{x}) = 0 \quad \text{for } j = 1, \dots, k \\
\end{array}
$$

LINEAR PROGRAM (LP)

• *f* linear s.t. linear constraints. Standard form:

min **x**∈R*^d c* ⊤**x** s.t. $Ax \ge b$ $x \geq 0$

for $\boldsymbol{c} \in \mathbb{R}^d, \boldsymbol{A} \in \mathbb{R}^{k \times d}$ and $\boldsymbol{b} \in \mathbb{R}^k$.

Visualization of constraints of 2D and 3D linear program (Source right figure: Wikipedia).

© Optimization in Machine Learning – 2 / 14

X

XX

QUADRATIC PROGRAM (QP)

f quadratic form s.t. linear constraints. Standard form:

$$
\min_{\mathbf{x} \in \mathbb{R}^d} \quad \frac{1}{2} \mathbf{x}^\top \mathbf{A} \mathbf{x} + \mathbf{b}^\top \mathbf{x} + c
$$
\n
$$
\text{s.t.} \quad \mathbf{E} \mathbf{x} \leq \mathbf{f}
$$
\n
$$
\mathbf{G} \mathbf{x} = \mathbf{h}
$$

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\circ \\
\hline\n\circ \\
\hline\n\circ\n\end{array}
$$

 $A \in \mathbb{R}^{d \times d}, \boldsymbol{b} \in \mathbb{R}^d, \boldsymbol{c} \in \mathbb{R}, \boldsymbol{E} \in \mathbb{R}^{k \times d}, \boldsymbol{f} \in \mathbb{R}^k, \boldsymbol{G} \in \mathbb{R}^{l \times d}, \boldsymbol{h} \in \mathbb{R}^l.$

Visualization of quadratic objective (dashed) over linear constraints (grey). Source: Ma, Signal Processing Optimization Techniques, 2015.

CONVEX PROGRAM (CP)

f convex, convex inequality constraints, linear equality constraints. Standard form:

$$
\min_{\mathbf{x} \in \mathbb{R}^d} \quad f(\mathbf{x})
$$
\n
$$
\text{s.t.} \quad g_i(\mathbf{x}) \le 0, i = 1, ..., k
$$
\n
$$
\mathbf{Ax} = \mathbf{b}
$$

$$
\begin{array}{c}\n\circ \\
\times \\
\hline\n\circ \\
\hline\n\circ \\
\hline\n\circ\n\end{array}
$$

$$
\text{for } \textbf{A} \in \mathbb{R}^{l \times d} \text{ and } \textbf{b} \in \mathbb{R}^{l}.
$$

Convex program (left) vs. nonconvex program (right). Source: Mathworks.

FURTHER TYPES

Quadratically constrained linear program (QCLP) and quadratically constrained quadratic program (QCQP).

 $\bm{\times}$ $\times\overline{\times}$

EXAMPLE 1: UNIT CIRCLE

min
$$
f(x_1, x_2) = x_1 + x_2
$$

s.t. $h(x_1, x_2) = x_1^2 + x_2^2 - 1 = 0$

 \times \times

 f , *h* smooth. Problem **not convex** (S is not a convex set).

Note: If the constraint is replaced by $g(x_1, x_2) = x_1^2 + x_2^2 - 1 \le 0$, the problem is a convex program, even a quadratically constrained linear program (QCLP).

EXAMPLE 2: MAXIMUM LIKELIHOOD

Experiment: Draw *m* balls from a bag with balls of *k* different colors. Color *j* has a probability of *p^j* of being drawn.

The probability to realize the outcome $\mathbf{x} = (x_1, ..., x_k)$, x_i being the number of balls drawn in color *j*, is:

$$
f(\mathbf{x}, m, \mathbf{p}) = \begin{cases} \frac{m!}{x_1! \cdots x_k!} \cdot p_1^{x_1} \cdots p_k^{x_k} & \text{if } \sum_{i=1}^k x_i = m \\ 0 & \text{otherwise} \end{cases}
$$

The parameters p_i are subject to the following constraints:

$$
0 \le p_j \le 1 \qquad \text{for all } i
$$

$$
\sum_{j=1}^m p_j = 1.
$$

EXAMPLE 2: MAXIMUM LIKELIHOOD / 2

For a fixed *m* and a sample $\mathcal{D} = (\mathbf{x}^{(1)},...,\mathbf{x}^{(n)}),$ where $\sum_{j=1}^k \mathbf{x}^{(i)}_j = m$ for all $i = 1, ..., n$, the negative log-likelihood is:

$$
-\ell(\mathbf{p}) = -\log \left(\prod_{i=1}^{n} \frac{m!}{\mathbf{x}_{1}^{(i)}! \cdots \mathbf{x}_{k}^{(i)}} \cdot p_{1}^{\mathbf{x}_{1}^{(i)}} \cdots p_{k}^{\mathbf{x}_{k}^{(i)}} \right)
$$

=
$$
\sum_{i=1}^{n} \left[-\log(m!) + \sum_{j=1}^{k} \log(\mathbf{x}_{j}^{(i)}) - \sum_{j=1}^{k} \mathbf{x}_{j}^{(i)} \log(p_{j}) \right]
$$

$$
\propto -\sum_{i=1}^{n} \sum_{j=1}^{k} \mathbf{x}_{j}^{(i)} \log(p_{j})
$$

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\end{array}
$$

f, *g*, *h* are smooth.

Convex program: convex^(*) objective + box/linear constraints).

 $(*)$: log is concave, $-$ log is convex, and the sum of convex functions is convex.

EXAMPLE 3: RIDGE REGRESSION

Ridge regression can be formulated as regularized ERM:

$$
\hat{\theta}_{\text{Ridge}} = \arg\min_{\theta} \left\{ \sum_{i=1}^{n} \left(y^{(i)} - \theta^{\top} \mathbf{x} \right)^2 + \lambda ||\theta||_2^2 \right\}
$$

Equivalently it can be written as constrained optimization problem:

f, *g* smooth. **Convex program** (convex objective, quadratic constraint).

 β .

EXAMPLE 4: LASSO REGRESSION

Lasso regression can be formulated as regularized ERM:

$$
\hat{\theta}_{\text{Lasso}} = \arg\min_{\theta} \left\{ \sum_{i=1}^{n} \left(y^{(i)} - \theta^{\top} \mathbf{x} \right)^2 + \lambda ||\theta||_1 \right\}
$$

Equivalently it can be written as constrained optimization problem:

$$
\min_{\theta} \sum_{i=1}^{n} (\theta^{\top} \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^2
$$
\ns.t.
$$
\|\theta\|_1 \leq t
$$

f smooth, *g* **not smooth**. Still **convex program**.

© Optimization in Machine Learning – 10 / 14

 β ,

 $\overline{\mathbf{X}}$

The SVM problem can be formulated in 3 equivalent ways: two primal, and one dual one (we will see later what "dual" means). Here, we only discuss the nature of the optimization problems. A more thorough statistical derivation of SVMs is given in "Supervised learning".

Formulation 1 (primal): ERM with Hinge loss

X X

Formulation 2 (primal): Geometric formulation

- Find decision boundary which separates classes with **maximum** safety distance
- Distance to points closest to decision boundary ("safety margin γ ") should be **maximized**

Formulation 2 (primal): Geometric formulation

$$
\min_{\theta, \theta_0} \quad \frac{1}{2} \|\theta\|^2
$$
\ns.t.

\n
$$
y^{(i)} \left(\left\langle \theta, \mathbf{x}^{(i)} \right\rangle + \theta_0 \right) \ge 1 \quad \forall i \in \{1, \ldots, n\}
$$

X X

Maximize safety margin γ . No point is allowed to violate safety margin constraint.

The problem is a **QP**: Quadratic objective with linear constraints.

Formulation 2 (primal): Geometric formulation (soft constraints)

$$
\min_{\theta, \theta_0, \zeta^{(i)}} \quad \frac{1}{2} \|\theta\|^2 + C \sum_{i=1}^n \zeta^{(i)}
$$
\ns.t.
$$
y^{(i)} \left(\left\langle \theta, \mathbf{x}^{(i)} \right\rangle + \theta_0 \right) \ge 1 - \zeta^{(i)} \quad \forall i \in \{1, ..., n\},
$$
\nand
$$
\zeta^{(i)} \ge 0 \quad \forall i \in \{1, ..., n\}.
$$

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\circ \\
\hline\n\circ \\
\hline\n\circ\n\end{array}
$$

Maximize safety margin γ . Margin violations are allowed, but are minimized.

The problem is a **QP**: Quadratic objective with linear constraints.

Formulation 3 (dual): Dualizing the primal formulation

$$
\max_{\alpha \in \mathbb{R}^n} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle
$$
\n
$$
\text{s.t.} \quad 0 \le \alpha_i \le C \quad \forall \, i \in \{1, \dots, n\}, \quad \sum_{i=1}^n \alpha_i y^{(i)} =
$$

Matrix notation:

$$
\max_{\alpha \in \mathbb{R}^n} \quad \alpha^{\top} \mathbf{1} - \frac{1}{2} \alpha^{\top} \operatorname{diag}(\mathbf{y}) \mathbf{X}^{\top} \mathbf{X} \operatorname{diag}(\mathbf{y}) \alpha
$$
\ns.t. $0 \le \alpha_i \le C \quad \forall i \in \{1, ..., n\}, \quad \alpha^{\top} \mathbf{y} = 0$

Kernelization: Replace dot product between **x**'s with $K_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$, where $k(\cdot, \cdot)$ is a positive definite kernel function (\Rightarrow **K** positive semi-definite).

$$
\max_{\alpha \in \mathbb{R}^n} \quad \alpha^{\top} \mathbf{1} - \frac{1}{2} \alpha \operatorname{diag}(\mathbf{y}) \mathbf{K} \operatorname{diag}(\mathbf{y}) \alpha
$$
\n
$$
\text{s.t.} \quad 0 \le \alpha_i \le C \quad \forall i \in \{1, \dots, n\}, \quad \alpha^{\top} \mathbf{y} = 0
$$

This is QP with a single affine equality constraint and *n* box constraints.

 θ