
Optimization in Machine Learning

Optimization Problems
Unconstrained problems
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UNCONSTRAINED OPTIMIZATION PROBLEM

min
x∈S

f (x)

with objective function
f : S → R.

The problem is called

unconstrained, if the domain S is not restricted:

S = Rd

smooth if f is at least ∈ C1

univariate if d = 1, and multivariate if d > 1.

convex if f convex function and S convex set
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NOTE: A CONVENTION IN OPTIMIZATION

W.l.o.g., we always minimize functions f .

Maximization results from minimizing −f .
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The solution to maximizing f (left) is equivalent to the solution to minimizing f (right).
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EXAMPLE 1: MAXIMUM LIKELIHOOD

D =
(
x(1), ..., x(n)

) i.i.d.∼ f (x | µ, σ) with σ = 1:

f (x | µ, σ) = 1√
2πσ2

exp

(
−(x − µ)2

2σ2

)
Goal: Find µ ∈ R which makes observed data most likely.
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EXAMPLE 1: MAXIMUM LIKELIHOOD / 2

Likelihood:

L(µ | D) =
n∏

i=1

f
(

x(i) | µ, 1
)
= (2π)−n/2 exp

(
−1

2

n∑
i=1

(x(i) − µ)2

)
Neg. log-likelihood:

−ℓ(µ,D) = − logL(µ | D) =
n
2
log(2π) +

1
2

n∑
i=1

(x(i) − µ)2
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EXAMPLE 1: MAXIMUM LIKELIHOOD / 3

min
µ∈R

−ℓ(µ,D).

can be solved analytically (setting the first deriv. to 0) since it is a
quadratic form:

−∂ℓ(µ,D)

∂µ
=

n∑
i=1

(
x(i) − µ

)
= 0 ⇔ µ̂ =

1
n

n∑
i=1

x(i)
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EXAMPLE 1: MAXIMUM LIKELIHOOD / 4

Note: The problem was smooth, univariate, unconstrained, convex.

If we had optimized for σ as well

min
µ∈R,σ∈R+

−ℓ(µ,D).

(instead of assuming it is known) the problem would have been:

bivariate (optimize over (µ, σ))

constrained (σ > 0)

min
µ∈R,σ∈R+

−ℓ(µ,D).
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EXAMPLE 2: NORMAL REGRESSION

Assume (multivariate) data D =
((

x(1), y (1)
)
, . . . ,

(
x(n), y (n)

))
and we want to fit a linear function to it

y = f (x) = θ⊤x
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EXAMPLE 2: LEAST SQUARES LINEAR REGR.

Find param vector θ that minimizes SSE / risk with L2 loss

min
θ∈Rd

n∑
i=1

(
θ⊤x(i) − y (i)

)2
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Smooth, multivariate, unconstrained, convex problem

Quadratic form

Analytic solution: θ = (X⊤X)−1X⊤y , where X is design matrix
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RISK MINIMIZATION IN ML

In the above example, if we exchange

min
θ∈Rd

n∑
i=1

(
θ⊤x(i) − y (i)

)2

the linear model θ⊤x by an arbitrary model f (x | θ)
the L2-loss (f (x | θ)− y)2 by any loss L (y , f (x))

we arrive at general empirical risk minimization (ERM)

Remp(θ) =
n∑

i=1

L
(

y (i), f
(

x(i) | θ
))

= min!

Usually, we add a regularizer to counteract overfitting:

Rreg(θ) =
n∑

i=1

L
(

y (i), f
(

x(i) | θ
))

+ λJ(θ) = min!
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RISK MINIMIZATION IN ML / 2

ML models usually consist of the following components:

ML = Hypothesis Space + Risk + Regularization︸ ︷︷ ︸
Formulating the optimization problem

+ Optimization︸ ︷︷ ︸
Solving it

Hypothesis Space: Parametrized function space

Risk: Measure prediction errors on data with loss L

Regularization: Penalize model complexity

Optimization: Practically minimize risk over parameter space
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EXAMPLE 3: REGULARIZED LM
ERM with L2 loss, LM, and L2 regularization term:

Rreg(θ) =
n∑

i=1

(
θ⊤x(i) − y (i)

)2
+ λ · ∥θ∥2

2 (Ridge regr.)

Problem multivariate, unconstrained, smooth, convex and has analytical solution
θ = (X⊤X + λI)−1X⊤y .

ERM with L2-loss, LM, and L1 regularization:

Rreg(θ) =
n∑

i=1

(
θ⊤x(i) − y (i)

)2
+ λ · ∥θ∥1 (Lasso regr.)

The problem is still multivariate, unconstrained, convex, but not smooth.
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EXAMPLE 4: (REGULARIZED) LOG. REGRESSION

For y ∈ {0, 1} (classification), logistic regression minimizes
log / Bernoulli / cross-entropy loss over data

Remp(θ) =
n∑

i=1

(
−y (i) · θ⊤x(i) + log(1 + exp

(
θ⊤x(i)

))
Multivariate, unconstrained, smooth, convex, not analytically solvable.
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EXAMPLE 4: (REGULARIZED) LOG. REGRESSION
/ 2
Elastic net regularization is a combination of L1 and L2 regularization

1
2n

n∑
i=1

L
(

y (i), f
(

x(i) | θ
))

+ λ

[
1 − α

2
∥θ∥2

2 + α∥θ∥1

]
, λ ≥ 0, α ∈ [0, 1]

θ̂

−0.25

0.00

0.25

0.50

−0.25 0.00 0.25 0.50
θ1

θ 2

Reg. risk with   λ = 0.1 ,  α = 0

θ̂

−0.25

0.00

0.25

0.50

−0.25 0.00 0.25 0.50
θ1

θ 2

Reg. risk with   λ = 1 ,  α = 0

θ̂

−0.25

0.00

0.25

0.50

−0.25 0.00 0.25 0.50
θ1

θ 2

Reg. risk with   λ = 0.1 ,  α = 0.5

θ̂

−0.25

0.00

0.25

0.50

−0.25 0.00 0.25 0.50
θ1

θ 2

Reg. risk with   λ = 1 ,  α = 0.5

θ̂

−0.25

0.00

0.25

0.50

−0.25 0.00 0.25 0.50
θ1

θ 2

Reg. risk with   λ = 0.1 ,  α = 1

θ̂

−0.25

0.00

0.25

0.50

−0.25 0.00 0.25 0.50
θ1

θ 2

Reg. risk with   λ = 1 ,  α = 1

The higher λ, the closer to the origin, L1 shrinks coeffs exactly to 0.
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EXAMPLE 4: (REGULARIZED) LOG. REGRESSION
/ 3

1
2n

n∑
i=1

L
(

y (i), f
(

x(i) | θ
))

+ λ

[
1 − α

2
∥θ∥2

2 + α∥θ∥1

]
, λ ≥ 0, α ∈ [0, 1]

Problem characteristics:

Multivariate

Unconstrained

If α = 0 (Ridge) problem is smooth; not smooth otherwise

Convex since L convex and both L1 and L2 norm are convex
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EXAMPLE 5: LINEAR SVM

D =
((

x(i), y (i)
))

i=1,...,n with y (i) ∈ {−1, 1} (classification)

f (x | θ) = θ⊤x ∈ R scoring classifier:
Predict 1 if f (x | θ) > 0 and −1 otherwise.

ERM with LM, hinge loss, and L2 regularization:

Rreg(θ) =
n∑

i=1

max
(

1 − y (i)f (i), 0
)
+ λθ⊤θ, f (i) := θ⊤x(i)
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This is one formulation of

the linear SVM. Problem

is: multivariate,

unconstrained, convex,

but not smooth.
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EXAMPLE 5: LINEAR SVM / 2

Understanding hinge loss L (y , f (x)) = max (1 − y · f , 0)

y f (x) Correct pred.? L (y , f (x)) Reason for costs
1 (−∞, 0) N (1,∞) Misclassification
−1 (0,∞) N (1,∞) Misclassification
1 (0, 1) Y (0, 1) Low confidence / margin
−1 (−1, 0) Y (0, 1) Low confidence / margin
1 (1,∞) Y 0 –
−1 (−∞,−1) Y 0 –

0
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yf(x)

L(
y,

 f(
x)

)

Loss

Hinge
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EXAMPLE 6: KERNELIZED SVM

Kernelized formulation of the primal(∗) SVM problem:

min
θ

n∑
i=1

L
(

y (i),K⊤
i θ
)
+ λθ⊤Kθ

with k(·, ·) pos. def. kernel function, and
K ij := k(x(i), x(j)), n × n psd kernel matrix, K i i-th column of K .

Kernelization

allows introducing nonlinearity
through projection into higher-dim.
feature space

without changing problem
characteristics (convexity!)

(∗) There is also a dual formulation to the problem (comes later!)
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EXAMPLE 6: NEURAL NETWORK

Normal loss, but complex f defined as computational feed-forward
graph. Complexity of optimization problem

argmin
θ

Rreg(θ),

so smoothness (maybe) or convexity (usually no) is influenced by loss,
neuron function, depth, regularization, etc.

Loss landscapes of ML problems.

Left: Deep learning model ResNet-56, right: Logistic regression with cross-entropy loss

Source: https://arxiv.org/pdf/1712.09913.pdf
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