Optimization in Machine Learning

Optimization Problems
Unconstrained problems

Reg.riskwith A=1, a=05

Learning goals
@ Definition
Max. likelihood
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UNCONSTRAINED OPTIMIZATION PROBLEM

in f
g 4

with objective function
f: §—R.

The problem is called
@ unconstrained, if the domain S is not restricted:

S =RY

@ smooth if f is at least € C!
@ univariate if d = 1, and multivariate if d > 1.
@ convex if f convex function and S convex set
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NOTE: A CONVENTION IN OPTIMIZATION

W.l.o.g., we always minimize functions f.

Maximization results from minimizing —f.
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The solution to maximizing f (left) is equivalent to the solution to minimizing f (right).
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EXAMPLE 1: MAXIMUM LIKELIHOOD
D= (x, .., xM) & f(x | p, o) with o = 1:

—U—uf)
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1
(x| o) = exp (

2702

Goal: Find i € R which makes observed data most likely.

Normal density, o’=1
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EXAMPLE 1: MAXIMUM LIKELIHOOD /2

@ Likelihood: 1 X
L(u|D) = Hf( O | 1) = (2m) "2 exp (—22<x<f>—u)2>

i=1
@ Neg. log-likelihood: N
n 1 ;
~{(1,D) = —log L(1| D) =  log(2m) + 5 > (x — p)? X X
i=1

Min. neg. log. likelihood
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EXAMPLE 1: MAXIMUM LIKELIHOOD /3

in —£(u, D).
min —¢(u. D)

can be solved analytically (setting the first deriv. to 0) since it is a
quadratic form:
D) NS (0 ) - R o W0
op —;(x M) =0 = ,u—n;x

Min. neg. log. likelihood
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EXAMPLE 1: MAXIMUM LIKELIHOOD /4

Note: The problem was smooth, univariate, unconstrained, convex.

If we had optimized for o as well
min  —4(u, D).
pER,cERT ('u )
(instead of assuming it is known) the problem would have been:
@ bivariate (optimize over (u, o))
@ constrained (o > 0)

in  —(u, D).
petmin g, —w D)
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EXAMPLE 2: NORMAL REGRESSION

Assume (multivariate) data D = ((x(1),y(M) ..., (x(", y())
and we want to fit a linear function to it

y=f(x)=0"x
.
e® .
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EXAMPLE 2: LEAST SQUARES LINEAR REGR.

Find param vector 6 that minimizes SSE / risk with L2 loss

min

min, in1 (mx(i) _ y(i))z

=2

@ Smooth, multivariate, unconstrained, convex problem

@ Quadratic form

@ Analytic solution: @ = (X" X)~'X Ty, where X is design matrix
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RISK MINIMIZATION IN ML

In the above example, if we exchange

n
. 2
- 0 _ 0
e 22 (00 =10)

@ the linear model 6 ' x by an arbitrary model 7(x | 0)
e the L2-loss (f(x | @) — y)? by any loss L (y, f(x))

we arrive at general empirical risk minimization (ERM)

Rump(6) = Z (0.1 (] 6)) = min

1=

Usually, we add a regularizer to counteract overfitting:

Riog(0) = Z L (y(">, f (x<"> | e)) + A\J(6) = min!

=
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RISK MINIMIZATION IN ML /2
ML models usually consist of the following components:

ML = Hypothesis Space + Risk + Regularization + Optimization

Ve Vv
Formulating the optimization problem Solving it

@ Hypothesis Space: Parametrized function space

@ Risk: Measure prediction errors on data with loss L

@ Regularization: Penalize model complexity

@ Optimization: Practically minimize risk over parameter space
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EXAMPLE 3: REGULARIZED LM

ERM with L2 loss, LM, and L2 regularization term: O O x

Rieg(0) = i (eTx(i) - y(i))2 +A-]16]z (Ridge regr) x O
i=1

Problem multivariate, unconstrained, smooth, convex and has analytical solution
0=X"X+X)""XTy.
ERM with L2-loss, LM, and L1 regularization: x x

n

p A\ 2
Rieg(8) = > (oTx(') - y(’)) + X116l (Lasso regr)

i=1

The problem is still multivariate, unconstrained, convex, but not smooth.

Unregularized Remp Lasso Ridge
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EXAMPLE 4: (REGULARIZED) LOG. REGRESSION

For y € {0, 1} (classification), logistic regression minimizes
log / Bernoulli / cross-entropy loss over data

7?'emp(e) = zn: (—y(i) . eTx(i) + |og(1 + exp <0Tx(i)>)
i=1

Multivariate, unconstrained, smooth, convex, not analytically solvable.
Unregularized Remp

log(r_emp)
2
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EXAMPLE 4: (REGULARIZED) LOG. REGRESSION

/2

Elastic net regularization is a combination of L1 and L2 regularization

1

Reg. riskwith A=0.1, a=0

[ LU [ [ 1/]
s

2

Reg. risk with A=0.1, a=05

6

The higher ), the closer to the origin, L1 shrinks coeffs exactly to 0.
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Reg. riskwith A=0.1, a=1
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EXAMPLE 4: (REGULARIZED) LOG. REGRESSION
/3

n
% L(yD.r(x?]6)) + A [1 1613+ all6lli| ;1> 0,0 € [0,1]
=1

Problem characteristics:

@ Multivariate

@ Unconstrained

@ If a = 0 (Ridge) problem is smooth; not smooth otherwise

@ Convex since L convex and both L1 and L2 norm are convex
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EXAMPLE 5: LINEAR SVM

D= ((x(i)ay(i)))i:1 Wlthy € {—1, 1} (classification)

@ f(x|0) = 0" x € R scoring classifier:
Predict 1 if f(x | ) > 0 and —1 otherwise.

ERM with LM, hinge loss, and L2 regularization:

Rireg(0 Z max (1 — gD o) 12070, ) .—gTxO

34 - .
0T This is one formulation of

Loss the linear SVM. Problem
winge is: multivariate,

N

Ly fx))

-

unconstrained, convex,

but not smooth.
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EXAMPLE 5: LINEAR SVM /2

Understanding hinge loss L (y, f(x)) = max (1 —y - f,0)

y f(x) Correct pred.? | L(y, f(x)) Reason for costs
1 (—00,0) N (1,00) Misclassification
—1 (0, 00) N (1,00) Misclassification
1 (0,1) Y (0,1) Low confidence / margin
—1 (—1,0) Y (0,1) Low confidence / margin
1 (1,00) Y 0 -
=1 | (—o0,—1) Y 0 -
1.0 °
! 3
=27 Loss
> Hinge
— 14
O 1 T T T T T
2 -1 0 1 2
yf(x)
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EXAMPLE 6: KERNELIZED SVM

Kernelized formulation of the primal(*) SVM problem:

mlnz ( 0 K 6 >+)\0TK9

with k(-, -) pos. def. kernel function, and
K = k(x(),x0)), n x npsd kernel matrix, K; i-th column of K.

Kernelization
@ allows introducing nonlinearity
through projection into higher-dim.
feature space

@ without changing problem
characteristics (convexity!)

*) There is also a dual formulation to the problem (comes later!)
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EXAMPLE 6: NEURAL NETWORK

Normal loss, but complex f defined as computational feed-forward
graph. Complexity of optimization problem

arg moin Rieg(0),

so smoothness (maybe) or convexity (usually no) is influenced by loss,
neuron function, depth, regularization, etc.

Loss landscapes of ML problems.

Left: Deep learning model ResNet-56, right: Logistic regression with cross-entropy loss

Source: https://arxiv.org/pdf/1712.09913.pdf
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https://arxiv.org/pdf/1712.09913.pdf

