Optimization in Machine Learning

Optimization Problems Unconstrained problems

× 0 0 × × ×

Learning goals

- Definition
- Max. likelihood
- Linear regression
- Regularized risk minimization
- SVM
- Neural network

UNCONSTRAINED OPTIMIZATION PROBLEM

with objective function

$$f: \mathcal{S} \to \mathbb{R}.$$

× × ×

The problem is called

• **unconstrained**, if the domain S is not restricted:

 $\mathcal{S} = \mathbb{R}^d$

- **smooth** if *f* is at least $\in C^1$
- univariate if d = 1, and multivariate if d > 1.
- **convex** if f convex function and S convex set

NOTE: A CONVENTION IN OPTIMIZATION

W.I.o.g., we always **minimize** functions *f*.

Maximization results from minimizing -f.

The solution to maximizing f (left) is equivalent to the solution to minimizing f (right).

× 0 0 × 0 × ×

EXAMPLE 1: MAXIMUM LIKELIHOOD

$$\mathcal{D} = \left(\mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)}\right) \stackrel{\text{i.i.d.}}{\sim} f(\mathbf{x} \mid \mu, \sigma) \text{ with } \sigma = 1:$$
$$f(\mathbf{x} \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(\mathbf{x} - \mu)^2}{2\sigma^2}\right)$$

Goal: Find $\mu \in \mathbb{R}$ which makes observed data most likely.

× < 0 × × ×

EXAMPLE 1: MAXIMUM LIKELIHOOD / 2

- Likelihood: $\mathcal{L}(\mu \mid \mathcal{D}) = \prod_{i=1}^{n} f\left(\mathbf{x}^{(i)} \mid \mu, 1\right) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}^{(i)} - \mu)^2\right)$
- Neg. log-likelihood:

$$-\ell(\mu, \mathcal{D}) = -\log \mathcal{L}(\mu \mid \mathcal{D}) = \frac{n}{2}\log(2\pi) + \frac{1}{2}\sum_{i=1}^{n} (\mathbf{x}^{(i)} - \mu)^2$$

 $\times \times$

EXAMPLE 1: MAXIMUM LIKELIHOOD / 3

$$\min_{\mu \in \mathbb{R}} -\ell(\mu, \mathcal{D}).$$

can be solved analytically (setting the first deriv. to 0) since it is a quadratic form:

$$-\frac{\partial \ell(\mu, \mathcal{D})}{\partial \mu} = \sum_{i=1}^{n} \left(\mathbf{x}^{(i)} - \mu \right) = \mathbf{0} \quad \Leftrightarrow \quad \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)}$$

Min. neg. log. likelihood

EXAMPLE 1: MAXIMUM LIKELIHOOD / 4

Note: The problem was smooth, univariate, unconstrained, convex.

If we had optimized for σ as well

$$\min_{\iota \in \mathbb{R}, \sigma \in \mathbb{R}^+} -\ell(\mu, \mathcal{D}).$$

(instead of assuming it is known) the problem would have been:

- bivariate (optimize over (μ, σ))
- constrained ($\sigma > 0$)

$$\min_{\iota \in \mathbb{R}, \sigma \in \mathbb{R}^+} -\ell(\mu, \mathcal{D}).$$

× × ×

EXAMPLE 2: NORMAL REGRESSION

Assume (multivariate) data $\mathcal{D} = ((\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(n)}, \mathbf{y}^{(n)}))$ and we want to fit a linear function to it

$$\mathbf{y} = f(\mathbf{x}) = \mathbf{\theta}^{\top} \mathbf{x}$$

EXAMPLE 2: LEAST SQUARES LINEAR REGR.

Find param vector $\boldsymbol{\theta}$ that minimizes SSE / risk with L2 loss

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \sum_{i=1}^n \left(\boldsymbol{\theta}^\top \mathbf{x}^{(i)} - y^{(i)} \right)^2$$

- Smooth, multivariate, unconstrained, convex problem
- Quadratic form
- Analytic solution: $\theta = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$, where **X** is design matrix

RISK MINIMIZATION IN ML

In the above example, if we exchange

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \sum_{i=1}^n \left(\boldsymbol{\theta}^\top \mathbf{x}^{(i)} - y^{(i)} \right)^2$$

- the linear model $\theta^{\top} \mathbf{x}$ by an arbitrary model $f(\mathbf{x} \mid \theta)$
- the L2-loss $(f(\mathbf{x} \mid \theta) y)^2$ by any loss $L(y, f(\mathbf{x}))$

we arrive at general empirical risk minimization (ERM)

$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right) = \min!$$

Usually, we add a regularizer to counteract overfitting:

$$\mathcal{R}_{\text{reg}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} L\left(\boldsymbol{y}^{(i)}, f\left(\boldsymbol{x}^{(i)} \mid \boldsymbol{\theta}\right)\right) + \lambda J(\boldsymbol{\theta}) = \min!$$

. . . .

XX

RISK MINIMIZATION IN ML / 2

ML models usually consist of the following components:

ML = Hypothesis Space + Risk + Regularization + Optimization

Formulating the optimization problem

Solving it

- Hypothesis Space: Parametrized function space
- Risk: Measure prediction errors on data with loss L
- Regularization: Penalize model complexity
- Optimization: Practically minimize risk over parameter space

× × ×

EXAMPLE 3: REGULARIZED LM

ERM with L2 loss, LM, and L2 regularization term:

$$\mathcal{R}_{\mathsf{reg}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} - \boldsymbol{y}^{(i)} \right)^2 + \lambda \cdot \|\boldsymbol{\theta}\|_2^2$$
 (Ridge regr.)

Problem multivariate, unconstrained, smooth, convex and has analytical solution $\boldsymbol{\theta} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}.$

ERM with L2-loss, LM, and L1 regularization:

$$\mathcal{R}_{\text{reg}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} - \boldsymbol{y}^{(i)} \right)^{2} + \lambda \cdot \|\boldsymbol{\theta}\|_{1} \quad \text{(Lasso regr.)}$$

The problem is still multivariate, unconstrained, convex, but not smooth.

× 0 0 × 0 × ×

EXAMPLE 4: (REGULARIZED) LOG. REGRESSION

For $y \in \{0, 1\}$ (classification), logistic regression minimizes log / Bernoulli / cross-entropy loss over data

$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left(-y^{(i)} \cdot \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} + \log(1 + \exp\left(\boldsymbol{\theta}^{\top} \mathbf{x}^{(i)}\right) \right)$$

Multivariate, unconstrained, smooth, convex, not analytically solvable.

Unregularized R_{emp} d_{1} d_{1} d_{1} d_{1} d_{2} d_{1} d_{2} d_{1} d_{2} d_{1} d_{2} d_{1} d_{2} d_{1} d_{2} d_{2} d_{1} d_{2} d_{2} d_{2} d_{2} d_{2} d_{3} d_{1} d_{2} d_{3} d_{1} d_{2} d_{3} d_{3} × < 0 × × ×

EXAMPLE 4: (REGULARIZED) LOG. REGRESSION

Elastic net regularization is a combination of L1 and L2 regularization

$$\frac{1}{2n}\sum_{i=1}^{n}L\left(\mathbf{y}^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right) + \lambda\left[\frac{1-\alpha}{2}\|\boldsymbol{\theta}\|_{2}^{2} + \alpha\|\boldsymbol{\theta}\|_{1}\right], \lambda \geq 0, \alpha \in [0, 1]$$

The higher $\lambda,$ the closer to the origin, L1 shrinks coeffs exactly to 0.

EXAMPLE 4: (REGULARIZED) LOG. REGRESSION / 3

$$\frac{1}{2n}\sum_{i=1}^{n}L\left(\mathbf{y}^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right) + \lambda\left[\frac{1-\alpha}{2}\|\boldsymbol{\theta}\|_{2}^{2} + \alpha\|\boldsymbol{\theta}\|_{1}\right], \lambda \ge 0, \alpha \in [0, 1]$$

Problem characteristics:

- Multivariate
- Unconstrained
- If $\alpha = 0$ (Ridge) problem is smooth; not smooth otherwise
- Convex since L convex and both L1 and L2 norm are convex

Х

 $\times \times$

EXAMPLE 5: LINEAR SVM

n

•
$$\mathcal{D} = \left(\left(\mathbf{x}^{(i)}, y^{(i)} \right) \right)_{i=1,...,n}$$
 with $y^{(i)} \in \{-1, 1\}$ (classification)

 f(**x** | θ) = θ^T**x** ∈ ℝ scoring classifier: Predict 1 if f(**x** | θ) > 0 and −1 otherwise.

ERM with LM, hinge loss, and L2 regularization:

$$\mathcal{R}_{\mathsf{reg}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \max\left(1 - y^{(i)} f^{(i)}, 0\right) + \lambda \boldsymbol{\theta}^{\top} \boldsymbol{\theta}, \quad f^{(i)} := \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)}$$

This is one formulation of the **linear SVM**. Problem is: **multivariate**, **unconstrained**, **convex**, but **not smooth**. × 0 0 × × 0 × × ×

EXAMPLE 5: LINEAR SVM / 2

Understanding hinge loss $L(y, f(\mathbf{x})) = \max(1 - y \cdot f, 0)$

у	$f(\mathbf{x})$	Correct pred.?	$L(y, f(\mathbf{x}))$	Reason for costs
1	$(-\infty,0)$	N	$(1,\infty)$	Misclassification
-1	$(0,\infty)$	N	$(1,\infty)$	Misclassification
1	(0,1)	Y	(0,1)	Low confidence / margin
-1	(-1,0)	Y	(0,1)	Low confidence / margin
1	$(1,\infty)$	Y	0	_
-1	$(-\infty, -1)$	Y	0	_

EXAMPLE 6: KERNELIZED SVM

Kernelized formulation of the primal^(*) SVM problem:

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} L\left(\boldsymbol{y}^{(i)}, \boldsymbol{K}_{i}^{\top} \boldsymbol{\theta}\right) + \lambda \boldsymbol{\theta}^{\top} \boldsymbol{K} \boldsymbol{\theta}$$

with $k(\cdot, \cdot)$ pos. def. kernel function, and $\mathbf{K}_{ij} := k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}), n \times n$ psd kernel matrix, \mathbf{K}_i *i*-th column of K.

Kernelization

- allows introducing nonlinearity through projection into higher-dim. feature space
- without changing problem characteristics (convexity!)

(*) There is also a dual formulation to the problem (comes later!)

хx

EXAMPLE 6: NEURAL NETWORK

Normal loss, but complex *f* defined as computational feed-forward graph. Complexity of optimization problem

 $\arg\min_{\boldsymbol{\theta}} \mathcal{R}_{\mathsf{reg}}(\boldsymbol{\theta}),$

so smoothness (maybe) or convexity (usually no) is influenced by loss, neuron function, depth, regularization, etc.

Loss landscapes of ML problems.

Left: Deep learning model ResNet-56, right: Logistic regression with cross-entropy loss Source: https://arxiv.org/pdf/1712.09913.pdf ××