
Optimization in Machine Learning

Mathematical Concepts
Matrix Calculus

Learning goals
Rules of matrix calculus

Connection of gradient, Jacobian and
Hessian



SCOPE

X /Y denote space of independent/dependent variables

Identify dependent variable with a function y : X → Y, x 7→ y(x)

Assume y sufficiently smooth

In matrix calculus, x and y can be scalars, vectors, or matrices:

Type scalar x vector x matrix X

scalar y ∂y/∂x ∂y/∂x ∂y/∂X
vector y ∂y/∂x ∂y/∂x –
matrix Y ∂Y/∂x – –

We denote vectors/matrices in bold lowercase/uppercase letters
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NUMERATOR LAYOUT

Matrix calculus: collect derivative of each component of
dependent variable w.r.t. each component of independent variable

We use so-called numerator layout convention:

∂y
∂x

=

(
∂y
∂x1

, · · · , ∂y
∂xd

)
= ∇yT ∈ R1×d

∂y
∂x

=

(
∂y1

∂x
, · · · , ∂ym

∂x

)T

∈ Rm

∂y
∂x

=


∂y1
∂x
...

∂ym
∂x

 =

(
∂y
∂x1

· · · ∂y
∂xd

)
=


∂y1
∂x1

· · · ∂y1
∂xd

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xd

 = Jy ∈ Rm×d
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SCALAR-BY-VECTOR

Let x ∈ Rd , y , z : Rd → R and A be a matrix.

If y is a constant function: ∂y
∂x = 0T ∈ R1×d

Linearity: ∂(a·y+z)
∂x = a∂y

∂x + ∂z
∂x (a constant)

Product rule: ∂(y ·z)
∂x = y ∂z

∂x + ∂y
∂x z

Chain rule: ∂g(y)
∂x = ∂g(y)

∂y
∂y
∂x (g scalar-valued function)

Second derivative: ∂2y
∂x∂xT = ∇2yT (= ∇2y if y ∈ C2) (Hessian)

∂(xT Ax)
∂x = xT (A + AT )

∂(yT Az)
∂x = yT A ∂z

∂x + zT AT ∂y
∂x (y, z vector-valued functions of x)
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VECTOR-BY-SCALAR

Let x ∈ R and y, z : R→ Rm.

If y is a constant function: ∂y
∂x = 0 ∈ Rm

Linearity: ∂(a·y+z)
∂x = a ∂y

∂x + ∂z
∂x (a constant)

Chain rule: ∂g(y)
∂x = ∂g(y)

∂y
∂y
∂x (g vector-valued function)

∂(Ay)
∂x = A∂y

∂x (A matrix)
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VECTOR-BY-VECTOR

Let x ∈ Rd and y, z : Rd → Rm.

If y is a constant function: ∂y
∂x = 0 ∈ Rm×d

∂x
∂x = I ∈ Rd×d

Linearity: ∂(a·y+z)
∂x = a∂y

∂x + ∂z
∂x (a constant)

Chain rule: ∂g(y)
∂x = ∂g(y)

∂y
∂y
∂x (g vector-valued function)

∂(Ax)
∂x = A, ∂(xT B)

∂x = BT (A,B matrices)
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EXAMPLE

Consider f : R2 → R with

f (x) = exp
(
−(x − c)T A(x − c)

)
,

where c = (1, 1)T and A =

(
1 1/2

1/2 1

)
.

Compute ∇f (x) at x∗ = 0:

1 Write f (x) = exp(g(u(x))) with g(u) = −uT Au and u(x) = x − c

2 Chain rule: ∂f (x)
∂x = exp(g(u(x)))∂g(u)

∂u
∂u(x)
∂x

3 u∗ := u(x∗) = (−1,−1)T , g(u∗) = −3

4 ∂g(u)
∂u = −2uT A, ∂g(u∗)

∂u = (3, 3)

5 Linearity: ∂u(x)
∂x = ∂(x−c)

∂x = ∂x
∂x − ∂c

∂x = I2

6 ∇f (x∗) = ∂f (x∗)
∂x

T
= (exp(−3) · (3, 3) · I2)T = exp(−3)

(
3
3

)
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