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Mathematical Concepts
Quadratic forms II
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Spectrum of Hessian



PROPERTIES OF QUADRATIC FUNCTIONS
Recall: Quadratic form q

Univariate: q(x) = ax2 + bx + c

Multivariate: q(x) = xT Ax + bT x + c

General observation: If q ≥ 0 (q ≤ 0), q is convex (concave)

Univariate function: Second derivative is q′′(x) = 2a

q′′(x)
(>)

≥ 0: q (strictly) convex. q′′(x)
(<)

≤ 0: q (strictly) concave.

High (low) absolute values of q′′(x): high (low) curvature

Multivariate function: Second derivative is H = 2A

Convexity/concavity of q depend on eigenvalues of H

Let us look at an example of the form q(x) = xT Ax
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GEOMETRY OF QUADRATIC FUNCTIONS

Example: A =

(
2 −1
−1 2

)
=⇒ H = 2A =

(
4 −2
−2 4

)
Since H symmetric, eigendecomposition H = VΛVT with

V =

 | |
vmax vmin

| |

 =
1√
2

(
1 1
−1 1

)
orthogonal

and Λ =

(
λmax 0

0 λmin

)
=

(
6 0
0 2

)
.

© Optimization in Machine Learning – 2 / 7



GEOMETRY OF QUADRATIC FUNCTIONS / 2

vmax (vmin) direction of highest (lowest) curvature
Proof: With v = VT x:

xT Hx = xT VΛVT x = vTΛv =
d∑

i=1

λi v
2
i ≤ λmax

d∑
i=1

v2
i = λmax∥v∥2

Since ∥v∥ = ∥x∥ (V orthogonal): max∥x∥=1 xT Hx ≤ λmax

Additional: vmax
T Hvmax = eT

1 Λe1 = λmax

Analogous: min∥x∥=1 xT Hx ≥ λmin and vmin
T Hvmin = λmin

Contour lines of any quadratic form are ellipses
(with eigenvectors of A as principal axes, principal axis theorem)
Look at q(x) = xT Ax + bT x + c
Now use y = x − w = x + 1

2 A−1b
This already gives us the general form of an ellipse:
yT Ay = (x − w)T A(x − w) = q(x) + const
If we use z = V T y we obtain it in standard form

n∑
i=1

λi z2
i = zTΛz = yT VΛV T y = yT Ay = q(x) + const
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GEOMETRY OF QUADRATIC FUNCTIONS / 3

Recall: Second order condition for optimality is sufficient.

We skipped the proof at first, but can now catch up on it.
If H(x∗) ≻ 0 at stationary point x∗, then x∗ is local minimum (≺ for maximum).

Proof: Let λmin > 0 denote the smallest eigenvalue of H(x∗). Then:

f (x) = f (x∗) +∇f (x∗)︸ ︷︷ ︸
=0

T (x − x∗) +
1
2
(x − x∗)T H(x∗)(x − x∗)︸ ︷︷ ︸

≥λmin∥x−x∗∥2 (see above)

+ R2(x, x∗)︸ ︷︷ ︸
=o(∥x−x∗∥2)

.

Choose ϵ > 0 s.t. |R2(x, x∗)| < 1
2λmin∥x − x∗∥2 for each x ̸= x∗ with ∥x − x∗∥ < ϵ.

Then:

f (x) ≥ f (x∗)+
1
2
λmin∥x − x∗∥2 + R2(x, x∗)︸ ︷︷ ︸

>0

> f (x∗) for each x ̸= x∗ with ∥x − x∗∥ < ϵ.
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GEOMETRY OF QUADRATIC FUNCTIONS / 4

If spectrum of A is known, also that of H = 2A is known.

If all eigenvalues of H
(>)

≥ 0 (⇔ H
(≻)

≽ 0):

q (strictly) convex,
there is a (unique) global minimum.

If all eigenvalues of H
(<)

≤ 0 (⇔ H
(≺)

≼ 0):

q (strictly) concave,
there is a (unique) global maximum.

If H has both positive and negative eigenvalues (⇔ H indefinite):

q neither convex nor concave,
there is a saddle point.
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CONDITION AND CURVATURE

Condition of H = 2A is given by κ(H) = κ(A) = |λmax|/|λmin|.

High condition means:

|λmax| ≫ |λmin|
Curvature along vmax ≫ curvature along vmin

Problem for optimization algorithms like gradient descent (later)

Left: Excellent condition. Middle: Good condition. Right: Bad condition.
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APPROXIMATION OF SMOOTH FUNCTIONS

Any function f ∈ C2 can be locally approximated by a quadratic function
via second order Taylor approximation:

f (x) ≈ f (x̃) +∇f (x̃)T (x − x̃) +
1
2
(x − x̃)T∇2f (x̃)(x − x̃)

f and its second order approximation is shown by the dark and bright grid, respectively.
(Source: daniloroccatano.blog)

=⇒ Hessians provide information about local geometry of a function.
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