Optimization in Machine Learning
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PROPERTIES OF QUADRATIC FUNCTIONS

Recall: Quadratic form g
@ Univariate: g(x) = ax® + bx + ¢
@ Multivariate: g(x) = x"Ax + b'x + ¢
General observation: If g > 0 (g < 0), g is convex (concave)

Univariate function: Second derivative is ¢”(x) = 2a

(>) (<)
@ g’(x) > 0: g (strictly) convex. ¢”(x) < 0: g (strictly) concave.
@ High (low) absolute values of g”(x): high (low) curvature

Multivariate function: Second derivative is H = 2A
@ Convexity/concavity of g depend on eigenvalues of H
@ Let us look at an example of the form g(x) = x” Ax
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GEOMETRY OF QUADRATIC FUNCTIONS
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@ Since H symmetric, eigendecomposition H = VAV with
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GEOMETRY OF QUADRATIC FUNCTIONS /2

@ Vo ( ) direction of highest (lowest) curvature
Proof: With v = V'x:

d d
xTHX = X"VAV X = vV AV = > A7 < Ao D VF = A |V?
i=1 i=1

Since ||v|| = ||x|| (V orthogonal): max;x—1 X"HX < Amax
Additional: Vimax HVimax = €1 A1 = Amax
Analogous: min x| X" Hx > and THv i =

@ Contour lines of any quadratic form are ellipses
(with eigenvectors of A as principal axes, principal axis theorem)
Look at g(x) = x’ Ax + b x + ¢
Nowusey =x—w=x+JA"'b
This already gives us the general form of an ellipse:
y Ay = (x — w) A(x — w) = g(x) + const
If we use z = V" y we obtain it in standard form
n
SNz =z"Az=y"VAV'y = y" Ay = q(x) + const

i=1

Optimization in Machine Learning — 3/7



GEOMETRY OF QUADRATIC FUNCTIONS /3

Recall: Second order condition for optimality is sufficient.

We skipped the proof at first, but can now catch up on it.
If H(x™) > O at stationary point x*, then x* is local minimum (=< for maximum).

Proof: Let > 0 denote the smallest eigenvalue of H(x*). Then:
* * * 1 * * * *
f(x) = F(x*) + VIX) T(x = x*) + = (x = x*)TH(X*)(x — x*) + Ro(x,x*) .
N—_—— 2 N—_——
=0 > [lx—x* |2 (see above) =o(||x—x*||2)
Choose € > 0 s.t. [Rz2(X, X*)| < A [1x — x*||? for each x # x* with ||x — x*|| < e.
Then:

1
f(x) > f(x*)+§ X — x*||? 4+ Re(x,x*) > f(x*) for each x # x* with ||x — x*|| < e.

>0
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GEOMETRY OF QUADRATIC FUNCTIONS /4

If spectrum of A is known, also that of H = 2A is known.

_ ) )
@ If all eigenvaluesofH > 0 (< H = 0):
e q (strictly) convex,
o there is a (unique) global minimum.
, (<) (=)
@ Ifall eigenvaluesof H < 0 (& H < 0):

e q (strictly) concave,
e there is a (unique) global maximum.

@ If H has both positive and negative eigenvalues (< H indefinite):

e g neither convex nor concave,
e there is a saddle point.

local min local max saddle point
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CONDITION AND CURVATURE
Condition of H = 2A is given by x(H) = k(A) = [Amax|/|\minl-

High condition means:
@ | Amax| > [Amin]
@ Curvature along vnyax > curvature along v,
@ Problem for optimization algorithms like gradient descent (later)

N N

v h

Left: Excellent condition. Middle: Good condition. Right: Bad condition.
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APPROXIMATION OF SMOOTH FUNCTIONS

Any function f € C? can be locally approximated by a quadratic function
via second order Taylor approximation:

1(0) & (8) + VIE) (x — %) + 2 (x — 1) VH(R)(x — %)
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f and its second order approximation is shown by the dark and bright grid, respectively.
(Source: daniloroccatano.blog)

—> Hessians provide information about local geometry of a function.
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