Optimization in Machine Learning

Mathematical Concepts
Quadratic forms |

Learning goals
@ Definition of quadratic forms
@ Gradient, Hessian
@ Optima
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UNIVARIATE QUADRATIC FUNCTIONS

Consider a quadratic functiong: R — R

gx)=a-x*+b-x+c, a#o.
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A quadratic function g;(x) = x2 (left) and g2(x) = —x? (right).
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UNIVARIATE QUADRATIC FUNCTIONS /2

Basic properties: x
@ Slope of tangent at point (x, g(x)) is givenby ¢'(x) =2-a-x+ b

MR X%

@ Curvature of gis given by ¢’(x) =2 - a.

a1 = x* (orange), g2 = 2x? (green), gs(x) = —x° (blue), g2 = —3x? (magenta)

Optimization in Machine Learning — 2/8



UNIVARIATE QUADRATIC FUNCTIONS /3

@ Convexity/Concavity:
e a > 0: g convex, bounded from below, unique global minimum
e a < 0: g concave, bounded from above, unique global maximum
@ Optimum x*:
b
" 2a

*

d(x)=0 & 2ax*+b=0 & x
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Left: g;(x) = x2 (convex). Right: g»(x) = —x? (concave).
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MULTIVARIATE QUADRATIC FUNCTIONS

A quadratic function g : R — R has the following form:

gx) =x"Ax+b'x+c

with A € R*9 full-rank matrix, b € R?, ¢ € R.
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MULTIVARIATE QUADRATIC FUNCTIONS /2

W.l.0.g., assume A symmetric, i.e., AT = A.
If A not symmetric, there is always a symmetric matrix Asit.
g(x) = x"Ax = x"Ax = §(x).
Justification: We write
T 171 T 1.7 T
g(x) =x"Ax=-x' (A+A")x+ -x"(A—A")x
A A,

with Ay symmetric, A, anti-symmetric (i.e., A] = —Ay). Since x”ATx is
a scalar, it is equal to its transpose:

x (A—AT)x =x"Ax — x"ATx = x"Ax — (x"ATx) r

= x"Ax — x"Ax = 0.

Therefore, g(x) = §(x) with §(x) = x” Ax with A = A;/2.
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GRADIENT AND HESSIAN

@ The gradient of g is

Vq(x) = (AT + A)x+ b =2Ax + b € R’
Derivative in direction v € R is (by chain rule)

dg(x+ h-v)

_ T
e =Vq(x+hv)'v

h=0

h=0

@ The Hessian of g is
V2q(x) = (A" + A) =2A =:H € R%
Curvature in direction of v € R is (by chain rule)

d?q(x+ h- v)

e = v V2q(x + hv)v

h=0

h=0

=Vq(x)"v.

= v Hv.
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OPTIMUM

Since A has full rank, there exists a unique stationary point x*
(minimum, maximum, or saddle point):

Vg(x*) =0
2AX" +b=0
1
*=_—_A b
=72
local min local max saddle point
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Left: A positive definite. Middle: A negative definite. Right: A indefinite.
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OPTIMA: RANK-DEFICIENT CASE

Example: Assume A is not full rank but has a zero eigenvalue with eigenvector vy.
@ Recall: vo spans null space of A, i.e., A(avy) = 0foreach o € R
@ — A(x+ avy) = Ax
@ Since Vq(x) = 2Ax + b:

Va(x + avy) = 2A(X + avy) + b = 2Ax + b = Vq(x)

@ — g has infinitely many stationary points along line x* 4+ av,

@ Since H = 2A, kind of stationary point not changing along vo
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