Optimization in Machine Learning

Mathematical Concepts Quadratic forms I

Learning goals

- Definition of quadratic forms
- **•** Gradient, Hessian
- **•** Optima

UNIVARIATE QUADRATIC FUNCTIONS

Consider a **quadratic function** $q : \mathbb{R} \to \mathbb{R}$

$$
q(x) = a \cdot x^2 + b \cdot x + c, \qquad a \neq 0.
$$

A quadratic function $q_1(x) = x^2$ (left) and $q_2(x) = -x^2$ (right).

X \times \times

UNIVARIATE QUADRATIC FUNCTIONS / 2

Basic properties:

Slope of tangent at point $(x, q(x))$ is given by $q'(x) = 2 \cdot a \cdot x + b$

Curvature of *q* is given by $q''(x) = 2 \cdot a$.

 $q_1 = x^2$ (orange), $q_2 = 2x^2$ (green), $q_3(x) = -x^2$ (blue), $q_4 = -3x^2$ (magenta)

UNIVARIATE QUADRATIC FUNCTIONS / 3

Convexity/Concavity:

- *a* > 0: *q* convex, bounded from below, unique global **minimum**
- *a* < 0: *q* concave, bounded from above, unique global **maximum**
- **Optimum** *x* ∗ :

$$
q'(x^*)=0 \Leftrightarrow 2ax^*+b=0 \Leftrightarrow x^*=\frac{-b}{2a}
$$

Left: $q_1(x) = x^2$ (convex). **Right:** $q_2(x) = -x^2$ (concave).

 \times \times

MULTIVARIATE QUADRATIC FUNCTIONS

A quadratic function $q : \mathbb{R}^d \to \mathbb{R}$ has the following form:

$$
q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c
$$

with $\boldsymbol{A}\in\mathbbm{R}^{d\times d}$ full-rank matrix, $\boldsymbol{b}\in\mathbbm{R}^d$, $c\in\mathbbm{R}.$

MULTIVARIATE QUADRATIC FUNCTIONS / 2

W.l.o.g., assume $\bm{\mathsf{A}}$ symmetric, i.e., $\bm{\mathsf{A}}^{T}=\bm{\mathsf{A}}$.

If **A** not symmetric, there is always a symmetric matrix \tilde{A} s.t.

$$
q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x} = \tilde{q}(\mathbf{x}).
$$

Justification: We write

$$
q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \frac{1}{2} \mathbf{x}^T \underbrace{(\mathbf{A} + \mathbf{A}^T)}_{\widetilde{\mathbf{A}}_1} \mathbf{x} + \frac{1}{2} \mathbf{x}^T \underbrace{(\mathbf{A} - \mathbf{A}^T)}_{\widetilde{\mathbf{A}}_2} \mathbf{x}
$$

with \tilde{A}_1 symmetric, \tilde{A}_2 anti-symmetric (i.e., $\tilde{A}_2^T = -\tilde{A}_2$). Since $\mathbf{x}^T \mathbf{A}^T \mathbf{x}$ is a scalar, it is equal to its transpose:

$$
\mathbf{x}^T (\mathbf{A} - \mathbf{A}^T) \mathbf{x} = \mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{x}^T \mathbf{A}^T \mathbf{x} = \mathbf{x}^T \mathbf{A} \mathbf{x} - (\mathbf{x}^T \mathbf{A}^T \mathbf{x})^T
$$

$$
= \mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{x}^T \mathbf{A} \mathbf{x} = 0.
$$

 T herefore, $q(\mathbf{x}) = \widetilde{q}(\mathbf{x})$ with $\widetilde{q}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}}\widetilde{\mathbf{A}}\mathbf{x}$ with $\widetilde{\mathbf{A}} = \widetilde{\mathbf{A}}_1/2.$

GRADIENT AND HESSIAN

The **gradient** of *q* is

 $\nabla q(\mathbf{x}) = \left(\mathbf{A}^T + \mathbf{A}\right)\mathbf{x} + \mathbf{b} = 2\mathbf{A}\mathbf{x} + \mathbf{b} \in \mathbb{R}^d$ Derivative in direction $\mathbf{v} \in \mathbb{R}^d$ is (by chain rule)

$$
\left.\frac{\mathrm{d}q(\mathbf{x}+h\cdot\mathbf{v})}{\mathrm{d}h}\right|_{h=0}=\nabla q(\mathbf{x}+h\mathbf{v})^T\mathbf{v}\right|_{h=0}=\nabla q(\mathbf{x})^T\mathbf{v}.
$$

The **Hessian** of *q* is

$$
\nabla^2 q(\mathbf{x}) = (\mathbf{A}^T + \mathbf{A}) = 2\mathbf{A} =: \mathbf{H} \in \mathbb{R}^{d \times d}
$$

Curvature in direction of $v \in \mathbb{R}^d$ is (by chain rule)

$$
\left.\frac{\mathrm{d}^2q(\mathbf{x}+h\cdot\mathbf{v})}{\mathrm{d}h^2}\right|_{h=0}=\mathbf{v}^T\nabla^2q(\mathbf{x}+h\mathbf{v})\mathbf{v}\right|_{h=0}=\mathbf{v}^T\mathbf{H}\mathbf{v}.
$$

 \times \times

OPTIMUM

Since **A** has full rank, there exists a *unique* stationary point **x** ∗ (minimum, maximum, or saddle point):

$$
\nabla q(\mathbf{x}^*) = 0
$$

2A $\mathbf{x}^* + \mathbf{b} = 0$
 $\mathbf{x}^* = -\frac{1}{2}\mathbf{A}^{-1}\mathbf{b}.$

Left: A positive definite. **Middle: A** negative definite. **Right: A** indefinite.

OPTIMA: RANK-DEFICIENT CASE

Example: Assume **A** is **not** full rank but has a zero eigenvalue with eigenvector v_0 .

- **•** Recall: v_0 spans null space of **A**, i.e., $A(\alpha v_0) = 0$ for each $\alpha \in \mathbb{R}$
- $\bullet \implies A(x + \alpha v_0) = Ax$
- \bullet Since $\nabla q(\mathbf{x}) = 2\mathbf{A}\mathbf{x} + \mathbf{b}$:

 $\nabla q(\mathbf{x} + \alpha \mathbf{v}_0) = 2\mathbf{A}(\mathbf{x} + \alpha \mathbf{v}_0) + \mathbf{b} = 2\mathbf{A}\mathbf{x} + \mathbf{b} = \nabla q(\mathbf{x})$

- \implies q has infinitely many stationary points along line $\mathbf{x}^* + \alpha \mathbf{v}_0$ \bullet
- \bullet Since **H** = 2**A**, kind of stationary point not changing along v_0

 \times \times