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UNIVARIATE QUADRATIC FUNCTIONS

Consider a quadratic function q : R→ R

q(x) = a · x2 + b · x + c, a ̸= 0.

A quadratic function q1(x) = x2 (left) and q2(x) = −x2 (right).
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UNIVARIATE QUADRATIC FUNCTIONS / 2

Basic properties:

Slope of tangent at point (x , q(x)) is given by q′(x) = 2 · a · x + b

Curvature of q is given by q′′(x) = 2 · a.

q1 = x2 (orange), q2 = 2x2 (green), q3(x) = −x2 (blue), q4 = −3x2 (magenta)
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UNIVARIATE QUADRATIC FUNCTIONS / 3

Convexity/Concavity:
a > 0: q convex, bounded from below, unique global minimum
a < 0: q concave, bounded from above, unique global maximum

Optimum x∗:

q′(x∗) = 0 ⇔ 2ax∗ + b = 0 ⇔ x∗ =
−b
2a

Left: q1(x) = x2 (convex). Right: q2(x) = −x2 (concave).
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MULTIVARIATE QUADRATIC FUNCTIONS

A quadratic function q : Rd → R has the following form:

q(x) = xT Ax + bT x + c

with A ∈ Rd×d full-rank matrix, b ∈ Rd , c ∈ R.
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MULTIVARIATE QUADRATIC FUNCTIONS / 2

W.l.o.g., assume A symmetric, i.e., AT = A.

If A not symmetric, there is always a symmetric matrix Ã s.t.

q(x) = xT Ax = xT Ãx = q̃(x).

Justification: We write

q(x) = xT Ax =
1
2

xT (A + AT )︸ ︷︷ ︸
Ã1

x +
1
2

xT (A − AT )︸ ︷︷ ︸
Ã2

x

with Ã1 symmetric, Ã2 anti-symmetric (i.e., ÃT
2 = −Ã2). Since xT AT x is

a scalar, it is equal to its transpose:

xT (A − AT )x = xT Ax − xT AT x = xT Ax −
(
xT AT x

)T

= xT Ax − xT Ax = 0.

Therefore, q(x) = q̃(x) with q̃(x) = xT Ãx with Ã = Ã1/2.
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GRADIENT AND HESSIAN

The gradient of q is

∇q(x) =
(
AT + A

)
x + b = 2Ax + b ∈ Rd

Derivative in direction v ∈ Rd is (by chain rule)

dq(x + h · v)
dh

∣∣∣∣
h=0

= ∇q(x + hv)T v
∣∣∣∣
h=0

= ∇q(x)T v .

The Hessian of q is

∇2q(x) =
(
AT + A

)
= 2A =: H ∈ Rd×d

Curvature in direction of v ∈ Rd is (by chain rule)

d2q(x + h · v)
dh2

∣∣∣∣
h=0

= vT∇2q(x + hv)v
∣∣∣∣
h=0

= vT Hv .
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OPTIMUM

Since A has full rank, there exists a unique stationary point x∗

(minimum, maximum, or saddle point):

∇q(x∗) = 0

2Ax∗ + b = 0

x∗ = −1
2

A−1b.

Left: A positive definite. Middle: A negative definite. Right: A indefinite.
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OPTIMA: RANK-DEFICIENT CASE
Example: Assume A is not full rank but has a zero eigenvalue with eigenvector v0.

Recall: v0 spans null space of A, i.e., A(αv0) = 0 for each α ∈ R
=⇒ A(x + αv0) = Ax

Since ∇q(x) = 2Ax + b:

∇q(x + αv0) = 2A(x + αv0) + b = 2Ax + b = ∇q(x)

=⇒ q has infinitely many stationary points along line x∗ + αv0

Since H = 2A, kind of stationary point not changing along v0
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