## **Optimization in Machine Learning**

# Mathematical Concepts Quadratic forms I

× 0 0 × 0 × ×



#### Learning goals

- Definition of quadratic forms
- Gradient, Hessian
- Optima

#### UNIVARIATE QUADRATIC FUNCTIONS

Consider a quadratic function  $q: \mathbb{R} \to \mathbb{R}$ 

$$q(x) = a \cdot x^2 + b \cdot x + c, \qquad a \neq 0.$$



A quadratic function  $q_1(x) = x^2$  (left) and  $q_2(x) = -x^2$  (right).

× < 0 × ×

### **UNIVARIATE QUADRATIC FUNCTIONS / 2**

Basic properties:

• Slope of tangent at point (x, q(x)) is given by  $q'(x) = 2 \cdot a \cdot x + b$ 





• Curvature of q is given by  $q''(x) = 2 \cdot a$ .



 $q_1 = x^2$  (orange),  $q_2 = 2x^2$  (green),  $q_3(x) = -x^2$  (blue),  $q_4 = -3x^2$  (magenta)

### **UNIVARIATE QUADRATIC FUNCTIONS / 3**

- Convexity/Concavity:
  - *a* > 0: *q* convex, bounded from below, unique global **minimum**
  - a < 0: q concave, bounded from above, unique global **maximum**
- Optimum  $x^*$ :

$$q'(x^*) = 0 \quad \Leftrightarrow \quad 2ax^* + b = 0 \quad \Leftrightarrow \quad x^* = \frac{-b}{2a}$$



Left:  $q_1(x) = x^2$  (convex). Right:  $q_2(x) = -x^2$  (concave).



### **MULTIVARIATE QUADRATIC FUNCTIONS**

A quadratic function  $q : \mathbb{R}^d \to \mathbb{R}$  has the following form:

$$q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + \mathbf{c}$$

with  $\mathbf{A} \in \mathbb{R}^{d \times d}$  full-rank matrix,  $\mathbf{b} \in \mathbb{R}^{d}$ ,  $\mathbf{c} \in \mathbb{R}$ .



× × 0 × × ×

#### **MULTIVARIATE QUADRATIC FUNCTIONS / 2**

W.I.o.g., assume **A symmetric**, i.e.,  $\mathbf{A}^{T} = \mathbf{A}$ .

If **A** not symmetric, there is always a symmetric matrix  $\tilde{\mathbf{A}}$  s.t.

$$q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x} = \tilde{q}(\mathbf{x}).$$

Justification: We write

$$q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \frac{1}{2} \mathbf{x}^T \underbrace{(\mathbf{A} + \mathbf{A}^T)}_{\widetilde{\mathbf{A}}_1} \mathbf{x} + \frac{1}{2} \mathbf{x}^T \underbrace{(\mathbf{A} - \mathbf{A}^T)}_{\widetilde{\mathbf{A}}_2} \mathbf{x}$$

with  $\tilde{\mathbf{A}}_1$  symmetric,  $\tilde{\mathbf{A}}_2$  anti-symmetric (i.e.,  $\tilde{\mathbf{A}}_2^T = -\tilde{\mathbf{A}}_2$ ). Since  $\mathbf{x}^T \mathbf{A}^T \mathbf{x}$  is a scalar, it is equal to its transpose:

$$\mathbf{x}^{T}(\mathbf{A} - \mathbf{A}^{T})\mathbf{x} = \mathbf{x}^{T}\mathbf{A}\mathbf{x} - \mathbf{x}^{T}\mathbf{A}^{T}\mathbf{x} = \mathbf{x}^{T}\mathbf{A}\mathbf{x} - (\mathbf{x}^{T}\mathbf{A}^{T}\mathbf{x})^{T}$$
$$= \mathbf{x}^{T}\mathbf{A}\mathbf{x} - \mathbf{x}^{T}\mathbf{A}\mathbf{x} = 0.$$

Therefore,  $q(\mathbf{x}) = \tilde{q}(\mathbf{x})$  with  $\tilde{q}(\mathbf{x}) = \mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x}$  with  $\tilde{\mathbf{A}} = \tilde{\mathbf{A}}_1/2$ .



#### **GRADIENT AND HESSIAN**

• The gradient of q is

 $abla q(\mathbf{x}) = (\mathbf{A}^T + \mathbf{A}) \mathbf{x} + \mathbf{b} = 2\mathbf{A}\mathbf{x} + \mathbf{b} \in \mathbb{R}^d$ Derivative in direction  $\mathbf{v} \in \mathbb{R}^d$  is (by chain rule)

$$\frac{\mathrm{d}q(\mathbf{x}+h\cdot\boldsymbol{\nu})}{\mathrm{d}h}\Big|_{h=0} = \nabla q(\mathbf{x}+h\boldsymbol{\nu})^T\boldsymbol{\nu}\Big|_{h=0} = \nabla q(\mathbf{x})^T\boldsymbol{\nu}.$$

• The Hessian of q is

$$abla^2 q(\mathbf{x}) = \left( \mathbf{A}^{\mathcal{T}} + \mathbf{A} 
ight) = 2\mathbf{A} =: \mathbf{H} \in \mathbb{R}^{d imes d}$$

Curvature in direction of  $\boldsymbol{v} \in \mathbb{R}^d$  is (by chain rule)

$$\frac{\mathrm{d}^2 q(\mathbf{x}+h\cdot \boldsymbol{\nu})}{\mathrm{d}h^2}\Big|_{h=0} = \boldsymbol{\nu}^T \nabla^2 q(\mathbf{x}+h\boldsymbol{\nu})\boldsymbol{\nu}\Big|_{h=0} = \boldsymbol{\nu}^T \mathbf{H}\boldsymbol{\nu}.$$

× × 0 × × ×

#### **OPTIMUM**

Since **A** has full rank, there exists a *unique* stationary point **x**<sup>\*</sup> (minimum, maximum, or saddle point):

$$abla q(\mathbf{x}^*) = 0$$
  
 $2\mathbf{A}\mathbf{x}^* + \mathbf{b} = 0$   
 $\mathbf{x}^* = -\frac{1}{2}\mathbf{A}^{-1}\mathbf{b}.$ 





Left: A positive definite. Middle: A negative definite. Right: A indefinite.

#### **OPTIMA: RANK-DEFICIENT CASE**

**Example:** Assume A is **not** full rank but has a zero eigenvalue with eigenvector  $v_0$ .

- Recall:  $v_0$  spans null space of **A**, i.e.,  $\mathbf{A}(\alpha v_0) = 0$  for each  $\alpha \in \mathbb{R}$
- $\bullet \implies \mathbf{A}(\mathbf{x} + \alpha \mathbf{v}_0) = \mathbf{A}\mathbf{x}$
- Since  $\nabla q(\mathbf{x}) = 2\mathbf{A}\mathbf{x} + \mathbf{b}$ :

 $abla q(\mathbf{x} + lpha \mathbf{v}_0) = 2\mathbf{A}(\mathbf{x} + lpha \mathbf{v}_0) + \mathbf{b} = 2\mathbf{A}\mathbf{x} + \mathbf{b} = 
abla q(\mathbf{x})$ 

- $\Rightarrow$  *q* has infinitely many stationary points along line  $\mathbf{x}^* + \alpha \mathbf{v}_0$
- Since  $\mathbf{H} = 2\mathbf{A}$ , kind of stationary point not changing along  $\mathbf{v}_0$



× 0 0 × × ×