
Optimization in Machine Learning

Mathematical Concepts
Convexity

Learning goals
Convex sets

Convex functions



CONVEX SETS

A set of S ⊆ Rd is convex, if for all x, y ∈ S and all t ∈ [0, 1] the
following holds:

x + t(y − x) ∈ S

Intuitively: Connecting line between any x, y ∈ S lies completely in S.

Left: convex set. Right: not convex. (Source: Wikipedia)
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CONVEX FUNCTIONS

Let f : S → R, S convex. f is convex if for all x, y ∈ S and all t ∈ [0, 1]

f (x + t(y − x)) ≤ f (x) + t(f (y)− f (x)).

Intuitively: Connecting line lies above function.
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Left: Strictly convex function. Right: Convex, but not strictly.

Strictly convex if “<” instead of “≤”. Concave (strictly) if the inequality
holds with “≥” (“>”), respectively.

Note: f (strictly) concave ⇔ −f (strictly) convex.
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EXAMPLES

Convex function: f (x) = |x |
Proof:

f (x + t(y − x)) = |x + t(y − x)| = |(1 − t)x + t · y |
≤ |(1 − t)x |+ |t · y | = (1 − t)|x |+ t|y |
= |x |+ t · (|y | − |x |) = f (x) + t · (f (y)− f (x))

Concave function: f (x) = log(x)

Neither nor: f (x) = exp(−x2) (but log-concave)
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OPERATIONS PRESERVING CONVEXITY

Nonnegatively weighted summation: Weights w1, . . . ,wn ≥ 0,
convex functions f1, . . . , fn: w1f1 + · · ·+ wnfn also convex
In particular: Sum of convex functions also convex

Composition: g convex, f linear: h = g ◦ f also convex
Proof:

h(x + t(y − x)) = g(f (x + t(y − x)))

= g(f (x) + t(f (y)− f (x)))

≤ g(f (x)) + t(g(f (y))− g(f (x)))

= h(x) + t(h(y)− h(x))

Elementwise maximization: f1, . . . , fn convex functions:
g(x) = max {f1(x), . . . , fn(x)} also convex
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FIRST ORDER CONDITION

Prove convexity via gradient:
Let f be differentiable.

f (strictly) convex

⇐⇒

f (y)
(>)

≥ f (x) +∇f (x)T (y − x) for all x, y ∈ S (s.t. x ̸= y)
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SECOND ORDER CONDITION

Matrix A is positive (semi)definite (p.(s.)d.) if vT Av
(≥)
> 0 for all v ̸= 0.

Notation: A
(≽)
≻ 0 for A p.(s.)d. and B

(≽)
≻ A if B − A

(≽)
≻ 0

Prove convexity via Hessian:
Let f ∈ C2 and H(x) be its Hessian.

f (strictly) convex ⇐⇒ H(x)
(≻)

≽ 0 for all x ∈ S

Alternatively: Since H(x) symmetric for f ∈ C2:

H(x) ≽ 0 ⇔ all eigenvalues of H(x) ≥ 0
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SECOND ORDER CONDITION / 2

Example: f (x) = x2
1 + x2

2 − 2x1x2, ∇f (x) =
(

2x1 − 2x2

2x2 − 2x1

)
, H(x) =

(
2 −2
−2 2

)
.

f is convex since H(x) is p.s.d. for all x ∈ S:

vT
(

2 −2
−2 2

)
v = vT

(
2v1 − 2v2

−2v1 + 2v2

)
= 2v2

1 − 2v1v2 − 2v1v2 + 2v2
2

= 2v2
1 − 4v1v2 + 2v2

2 = 2(v1 − v2)
2 ≥ 0.
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CONVEX FUNCTIONS IN OPTIMIZATION

For a convex function, every local optimum is also a global one
⇒ No need for involved global optimizers, local ones are enough

A strictly convex function has at most one optimal point

Example for strictly convex function without optimum: exp on R
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Left: Strictly convex; exactly one local minimum, which is also global. Middle: Convex,
but not strictly; all local optima are also global ones but not unique. Right: Not convex.
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CONVEX FUNCTIONS IN OPTIMIZATION / 2

“... in fact, the great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and nonconvexity.”

– R. Tyrrell Rockafellar. SIAM Review, 1993.
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