Optimization in Machine Learning

Mathematical Concepts
Convexity

Learning goals
@ Convex sets
@ Convex functions

X X



CONVEX SETS

A setof S C RY is convex, if for all x,y € S and all t € [0, 1] the
following holds:

x+tHy—x)eS

Intuitively: Connecting line between any x, y € S lies completely in S.

Left: convex set. Right: not convex. (Source: Wikipedia)
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CONVEX FUNCTIONS
Let f: S — R, S convex. fis convex if for all x,y € Sand all t € [0, 1]
f(x + t(y — x)) < £(x) + t(f(y) — 1(x)).

Intuitively: Connecting line lies above function.

f(x +tly = x]) ° ftcedy=x) y
Left: Strictly convex function. Right: Convex, but not strictly.

Strictly convex if “<” instead of “<”. Concave (strictly) if the inequality
holds with “>” (“>"), respectively.

Note: f (strictly) concave < —f (strictly) convex.
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EXAMPLES

Convex function: f(x) = x|

Proof:
fx+itly —x))=x+itly—x)=[1-t)x+ty|

<A =0x+t-yl = (1 = x|+ tly|
=[x+t (vl = Ix]) = 1(x) + t- (f(y) = £(x))
Concave function: f(x) = log(x)

Neither nor: 7(x) = exp(—x2) (but log-concave)

— abs

I — In
— exp(-x?)
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OPERATIONS PRESERVING CONVEXITY

@ Nonnegatively weighted summation: Weights wy,..., w, > 0,
convex functions fi, ..., f;: wyfy 4+ - - - + wyf, also convex
In particular: Sum of convex functions also convex

@ Composition: g convex, f linear: h = g o f also convex

Proof:
h(x + t(y — x)) = g(f(x + t(y — x)))
= g(f(x) + t(f(y) — f(x)))
< g(f(x)) + t(9((y)) — g(f(x)))
= h(x) + t(h(y) — h(x))
@ Elementwise maximization: f, ..., f, convex functions:
g(x) = max {fi(x), ..., fr(x)} also convex
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FIRST ORDER CONDITION
[ERrpe RIS Aradient

f (strictly) convex
=

f(y) (? f(x) + Vf(x)T(y —x) forallx,y € S (s.t. x #y)
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SECOND ORDER CONDITION

(=)
Matrix A is positive (semi)definite (p.(s.)d.) if v Av > 0forall v # 0.

. (=) =) (=)
Notation: A > Ofor Ap.(s.)d.and B >~ AifB—A > 0

Prove convexity via Hessian:
Let f € C2 and H(x) be its Hessian.

(-)
f (strictly) convex <= H(x) = Oforallx € S

Alternatively: Since H(x) symmetric for f € C2:

H(x) = 0 < all eigenvalues of H(x) > 0
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SECOND ORDER CONDITION /2

oo

2X1 — 2X2

2X2 — 2X1

x5 — 2x1x2, VI(X) = (

2
|

= X

Example: f(x)

X
X

f is convex since H(x) is p.s.d. for all x € S:

2

—2ViVe — 2ViVe + 2V,

2
2vj

2V1 —2V2 _
—2V1 +2V2 B

“

2>0.

2(V1 — Vg)

2
Vo

2v12 —4vive 4 2
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CONVEX FUNCTIONS IN OPTIMIZATION

@ For a convex function, every local optimum is also a global one
= No need for involved global optimizers, local ones are enough

@ A strictly convex function has at most one optimal point
@ Example for strictly convex function without optimum: exp on R

> >10 >

Left: Strictly convex; exactly one local minimum, which is also global. Middle: Convex,
but not strictly; all local optima are also global ones but not unique. Right: Not convex.
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CONVEX FUNCTIONS IN OPTIMIZATION /2

. in fact, the great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and nonconvexity.”

— R. Tyrrell Rockafellar. SIAM Review, 1993.

SIAM REVIEW
Vol. 35, No. 2, pp. 183-238, June 1993

© 1993 Society for Industrial and Applied Mathematics

o001

LAGRANGE MULTIPLIERS AND OPTIMALITY"
R. TYRRELL ROCKAFELLAR!
Abstract. Lagrange multipliers used to be viewed as auxiliary variables introduced in a problem of con-

strained minimization in order to write first-order optimality conditions formally as a system of equations.
Modern applications, with their emphasis on numerical methods and more complicated side conditions than

equations, have i ling of the concept and how it fits into a larger theoretical picture.

A major line of has been the of one-sided tangent and normal vectors to the
set of points satisfying the given mnunum Amnm has been the > game- -theoretic role of multiplier vectors
as solutions to a dual problem. of the optimal value with respect

to problem parameters have also hm explored. u;rnng: multipliers are now being seen as arising from a
general rule for the subdifferentiation of a nonsmooth objective function which allows black-and-white con-
straints to be replaced by penalty expressions. This paper traces such themes in the current theory of Lagrange
multipliers, providing along the way a free-standing exposition of basic nonsmooth analysis as motivated by
and applied to this subject.

Key words. Lagrange multipliers, optimization, saddle points, dual problems, augmented Lagrangian,
constraint qualifications, normal cones, subgradients, nonsmooth analysis
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