Optimization in Machine Learning

Mathematical Concepts Convexity

Learning goals

- Convex sets
- Convex functions

CONVEX SETS

A set of $\mathcal{S} \subseteq \mathbb{R}^d$ is $\mathsf{convex},$ if for all $\mathsf{x},\mathsf{y} \in \mathcal{S}$ and all $t \in [0,1]$ the following holds:

$$
\mathbf{x} + t(\mathbf{y} - \mathbf{x}) \in \mathcal{S}
$$

Intuitively: Connecting line between any $\mathbf{x}, \mathbf{y} \in \mathcal{S}$ lies completely in \mathcal{S} .

Left: convex set. **Right:** not convex. (Source: Wikipedia)

CONVEX FUNCTIONS

Let $f : \mathcal{S} \to \mathbb{R}, \mathcal{S}$ convex. *f* is **convex** if for all $\mathbf{x}, \mathbf{y} \in \mathcal{S}$ and all $t \in [0, 1]$

$$
f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) \leq f(\mathbf{x}) + t(f(\mathbf{y}) - f(\mathbf{x})).
$$

Intuitively: Connecting line lies above function.

Left: Strictly convex function. **Right:** Convex, but not strictly.

Strictly convex if "<" instead of "≤". **Concave** (strictly) if the inequality holds with " $>$ " (" $>$ "), respectively.

Note: *f* (strictly) concave \Leftrightarrow $-f$ (strictly) convex.

EXAMPLES

Convex function: $f(x) = |x|$ **Proof:** $f(x+t(y-x)) = |x+t(y-x)| = |(1-t)x+t \cdot y|$ \leq $|(1-t)x| + |t \cdot y| = (1-t)|x| + t|y|$ $= |x| + t \cdot (|y| - |x|) = f(x) + t \cdot (f(y) - f(x))$

Concave function: $f(x) = \log(x)$

Neither nor: $f(x) = \exp(-x^2)$ (but log-concave)

X \times \times

OPERATIONS PRESERVING CONVEXITY

- **Nonnegatively weighted summation:** Weights $w_1, \ldots, w_n > 0$, convex functions f_1, \ldots, f_n : $w_1 f_1 + \cdots + w_n f_n$ also convex In particular: Sum of convex functions also convex
- **Composition:** *g* convex, *f* linear: $h = g \circ f$ also convex **Proof:**

$$
h(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) = g(f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})))
$$

= $g(f(\mathbf{x}) + t(f(\mathbf{y}) - f(\mathbf{x})))$
 $\leq g(f(\mathbf{x})) + t(g(f(\mathbf{y})) - g(f(\mathbf{x})))$
= $h(\mathbf{x}) + t(h(\mathbf{y}) - h(\mathbf{x}))$

Elementwise maximization: f_1, \ldots, f_n convex functions: $g(\mathbf{x}) = \max\{f_1(\mathbf{x}), \ldots, f_n(\mathbf{x})\}$ also convex

FIRST ORDER CONDITION

Prove convexity via **gradient**: Let *f* be differentiable.

f (strictly) convex ⇐⇒

$$
f(\mathbf{y}) \stackrel{(>)}{\geq} f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \text{ for all } \mathbf{x}, \mathbf{y} \in \mathcal{S} \text{ (s.t. } \mathbf{x} \neq \mathbf{y})
$$

SECOND ORDER CONDITION

Matrix *A* is **positive (semi)definite** (p.(s.)d.) if $\mathbf{v}^{\mathsf{T}} A \mathbf{v} \stackrel{(\ge)}{>} 0$ for all $\mathbf{v} \neq 0.$

Notation:
$$
A \not\stackrel{(*)}{\succ} 0
$$
 for A p.(s.)d. and $B \not\stackrel{(*)}{\succ} A$ if $B - A \not\stackrel{(*)}{\succ} 0$

Prove convexity via **Hessian**: Let $f \in C^2$ and $H(\mathbf{x})$ be its Hessian.

$$
f \text{ (strictly) convex} \Longleftrightarrow H(\mathbf{x}) \stackrel{(\succ)}{\succ} 0 \text{ for all } \mathbf{x} \in \mathcal{S}
$$

Alternatively: Since $H(x)$ symmetric for $f \in C^2$:

 $H(\mathbf{x}) \succcurlyeq 0 \Leftrightarrow$ all eigenvalues of $H(\mathbf{x}) \geq 0$

SECOND ORDER CONDITION /2

Example:
$$
f(\mathbf{x}) = x_1^2 + x_2^2 - 2x_1x_2
$$
, $\nabla f(\mathbf{x}) = \begin{pmatrix} 2x_1 - 2x_2 \ 2x_2 - 2x_1 \end{pmatrix}$, $H(\mathbf{x}) = \begin{pmatrix} 2 & -2 \ -2 & 2 \end{pmatrix}$

OX $\times\overline{\times}$

f is convex since $H(\mathbf{x})$ is p.s.d. for all $\mathbf{x} \in \mathcal{S}$:

$$
\begin{aligned} \boldsymbol{v}^T \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \boldsymbol{v} &= \boldsymbol{v}^T \begin{pmatrix} 2v_1 - 2v_2 \\ -2v_1 + 2v_2 \end{pmatrix} = 2v_1^2 - 2v_1v_2 - 2v_1v_2 + 2v_2^2 \\ &= 2v_1^2 - 4v_1v_2 + 2v_2^2 = 2(v_1 - v_2)^2 \ge 0. \end{aligned}
$$

.

CONVEX FUNCTIONS IN OPTIMIZATION

- For a convex function, every local optimum is also a global one \Rightarrow No need for involved global optimizers, local ones are enough
- A strictly convex function has at most one optimal point
- **•** Example for strictly convex function without optimum: \exp on \mathbb{R}

Left: Strictly convex; exactly one local minimum, which is also global. **Middle:** Convex, but not strictly; all local optima are also global ones but not unique. **Right:** Not convex.

 \times \times

CONVEX FUNCTIONS IN OPTIMIZATION / 2

"... in fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

– R. Tyrrell Rockafellar. *SIAM Review*, 1993.

AMS subject classifications. 49K99, 58C20, 90C99, 49M29