Optimization in Machine Learning

Mathematical Concepts
Taylor Approximation X X

Learning goals
@ Taylor’s theorem (univariate)
@ Taylor series (univariate)
@ Taylor’s theorem (multivariate)
@ Taylor series (multivariate)




TAYLOR APPROXIMATIONS

@ Mathematically fascinating: Globally approximate function by sum
of polynomials determined by local properties

@ Extremely important for analyzing optimization algorithms

@ Geometry of linear and quadratic functions very well understood
— use them for approximations

Taylor polynomial for various orders at a=2
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TAYLOR’S THEOREM (UNIVARIATE)

Taylor’s theorem: Let / C IR be an open interval and f € C¥(/, R). For
each a, x € I, it holds that

K
f(x)=> i (j),(a) (x — ay +Rx(x, a)

Te(x.)
with the k-th Taylor polynomial T, and a remainder term

Rk(x,a) = o(|x — a*) asx — a.

@ There are explicit formulas for the remainder
@ Wording: We “expand f via Taylor around &”
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TAYLOR SERIES (UNIVARIATE)

@ If f € C*°, it might be expandable around a € I as a Taylor series

1K)
> f kfa) (x—a)f

k=0

@ If Taylor series converges to f in an interval Iy C / centered at a
(does not have to), we call f an analytic function

@ Convergence if Rx(x,a) — 0as k — oo forall x € I
@ Then, forall x € Iy:
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TAYLOR’S THEOREM (MULTIVARIATE)
Taylor’s theorem (1st order): For f € C', it holds that

f(x) = f(a) + Vf(a)"(x — a) +Ri(x, a).

T (x,a)

Example: f(x) = sin(2x) + cos(x2), a = (1,1)". Since Vf(x) = <2_C:|sn((2):))>

f(x) = Ti(x) + Ri(x,a) = f(a) + Vf(a)T(x —a)+ Ri(x,a)

= sin(2) + cos(1) + (2 cos(2), —sin(1))" (2 B }) + Ri(x, a)

283°
g8 ¥
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TAYLOR’S THEOREM (MULTIVARIATE) /2
Taylor’s theorem (2nd order): If f € C?, it holds that

f(x) = f(a) + Vf(a)"(x — a) + %(x —a)"H(a)(x — a) +Rx(x, a)

Tg(X,a)

Example (continued): Since H(x) = (74 5'8(2X1) co(l(x )),
- 2

f(x) = Ti(x, a) +% ()X(; - 1)7 (—4sci)n(2) _Cgs(1)) (2 - 1) + Ro(x,a)
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MULTIVARIATE TAYLOR APPROXIMATION

@ Higher order k gives a better approximation O O X
@ Ti(x, a) is the best k-th order approximation to f(x) near a X O

fix1, x2)
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Consider Tx(x, a) = f(a) + Vf(a)"(x — a) + J(x — a)"H(a)(x — a).
The first/second/third term ensures the values/slopes/curvatures of T
and f match at a.
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TAYLOR’S THEOREM (MULTIVARIATE)

The theorem for general order k requires a more involved notation.

Taylor’s theorem (k-th order): If f € C¥, it holds that

=3 212 iaxa

o!
|| <k

Tk(x,a)

with Ry (x, a) = o(||x — a||¥) as x — a.
Notation: Multi-index o € IN?

o lal=a1+ - +ay @ X =x{"- - x3°
0 al=a! - ay! o Dof— _ ol
D = St on

Optimization in Machine Learning — 7/9

X X



TAYLOR’S THEOREM (MULTIVARIATE) /2

Let us check for bivariate f (d = 2). For |a| < 1, we have x
ar | oz || ol | D | ol | (x—a) %
0 0 0 f 1 1
1 0 1 8f/8x1 1 X1 — a4
0 1 1 8f/8x2 1 Xo — ao x x

and therefore

_ f(a) f
T1(x,a)— 1 -1+ 8X1

83“3) ’ X1 —a
= f X
(@) + %LX:) (xz - a2>

= f(a) + Vf(a)"(x — a).
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TAYLOR SERIES (MULTIVARIATE)

@ Analogous to univariate case, if f € C*°, there might exist an open
ball B,(a) with radius r > 0 around a such that the Taylor series

> Pl g

lee|>0

converges to f on B(a)
@ Even if Taylor series converges, it might not converge to f

@ Upper bound R = sup {r | Taylor series converges on B,(a)} is
called the radius of convergence of Taylor series around a

@ If R > 0 and f analytic, Taylor series converges absolutely and
uniformly to f on compact sets inside Bg(a)

@ No general convergence behaviour on boundary of Br(a)
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