Optimization in Machine Learning

Mathematical Concepts Taylor Approximation

Learning goals

- Taylor's theorem (univariate)
- Taylor series (univariate)
- Taylor's theorem (multivariate)
- Taylor series (multivariate)

TAYLOR APPROXIMATIONS

- Mathematically fascinating: Globally approximate function by sum of polynomials determined by local properties
- Extremely important for analyzing optimization algorithms
- Geometry of linear and quadratic functions very well understood
 - \implies use them for approximations

TAYLOR'S THEOREM (UNIVARIATE)

Taylor's theorem: Let $I \subseteq \mathbb{R}$ be an open interval and $f \in C^k(I, \mathbb{R})$. For each $a, x \in I$, it holds that

$$f(x) = \underbrace{\sum_{j=0}^{k} \frac{f^{(j)}(a)}{j!} (x-a)^{j}}_{T_{k}(x,a)} + R_{k}(x,a)$$

× × ×

with the *k*-th **Taylor polynomial** T_k and a **remainder term**

$$R_k(x,a) = o(|x-a|^k)$$
 as $x \to a$.

- There are explicit formulas for the remainder
- Wording: We "expand f via Taylor around a"

TAYLOR SERIES (UNIVARIATE)

• If $f \in C^{\infty}$, it *might* be expandable around $a \in I$ as a **Taylor series**

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

- If Taylor series converges to *f* in an interval *I*₀ ⊆ *I* centered at *a* (does not have to), we call *f* an *analytic function*
- Convergence if $R_k(x,a)
 ightarrow 0$ as $k
 ightarrow \infty$ for all $x \in I_0$
- Then, for all $x \in I_0$:

$$f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(a)}{j!} (x-a)^j$$

TAYLOR'S THEOREM (MULTIVARIATE) Taylor's theorem (1st order): For $f \in C^1$, it holds that

$$f(\mathbf{x}) = \underbrace{f(\mathbf{a}) + \nabla f(\mathbf{a})^T(\mathbf{x} - \mathbf{a})}_{T_1(\mathbf{x}, \mathbf{a})} + R_1(\mathbf{x}, \mathbf{a}).$$

Example:
$$f(\mathbf{x}) = \sin(2x_1) + \cos(x_2), \ \mathbf{a} = (1, 1)^T$$
. Since $\nabla f(\mathbf{x}) = \begin{pmatrix} 2\cos(2x_1) \\ -\sin(x_2) \end{pmatrix}$,
 $f(\mathbf{x}) = T_1(\mathbf{x}) + R_1(\mathbf{x}, \mathbf{a}) = f(\mathbf{a}) + \nabla f(\mathbf{a})^T(\mathbf{x} - \mathbf{a}) + R_1(\mathbf{x}, \mathbf{a})$
 $= \sin(2) + \cos(1) + (2\cos(2), -\sin(1))^T \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix} + R_1(\mathbf{x}, \mathbf{a})$

× 0 0 × × × **TAYLOR'S THEOREM (MULTIVARIATE)** / 2 **Taylor's theorem (2nd order)**: If $f \in C^2$, it holds that

$$f(\mathbf{x}) = \underbrace{f(\mathbf{a}) + \nabla f(\mathbf{a})^T (\mathbf{x} - \mathbf{a}) + \frac{1}{2} (\mathbf{x} - \mathbf{a})^T H(\mathbf{a}) (\mathbf{x} - \mathbf{a})}_{T_2(\mathbf{x}, \mathbf{a})} + R_2(\mathbf{x}, \mathbf{a})$$

Example (continued): Since
$$H(\mathbf{x}) = \begin{pmatrix} -4\sin(2x_1) & 0\\ 0 & -\cos(x_2) \end{pmatrix}$$
,

$$f(\mathbf{x}) = T_1(\mathbf{x}, \mathbf{a}) + \frac{1}{2} \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix}^T \begin{pmatrix} -4\sin(2) & 0 \\ 0 & -\cos(1) \end{pmatrix} \begin{pmatrix} x_1 - 1 \\ x_2 - 1 \end{pmatrix} + R_2(\mathbf{x}, \mathbf{a})$$

× 0 0 × × ×

MULTIVARIATE TAYLOR APPROXIMATION

- Higher order k gives a better approximation
- $T_k(\mathbf{x}, \mathbf{a})$ is the best *k*-th order approximation to $f(\mathbf{x})$ near \mathbf{a}

Consider $T_2(\mathbf{x}, \mathbf{a}) = f(\mathbf{a}) + \nabla f(\mathbf{a})^T (\mathbf{x} - \mathbf{a}) + \frac{1}{2} (\mathbf{x} - \mathbf{a})^T H(\mathbf{a}) (\mathbf{x} - \mathbf{a})$. The first/second/third term ensures the values/slopes/curvatures of T_2 and f match at \mathbf{a} .

TAYLOR'S THEOREM (MULTIVARIATE)

The theorem for general order *k* requires a more involved notation. **Taylor's theorem (***k***-th order):** If $f \in C^k$, it holds that

$$f(\mathbf{x}) = \underbrace{\sum_{|\alpha| \le k} \frac{D^{\alpha} f(\boldsymbol{a})}{\alpha!} (\mathbf{x} - \boldsymbol{a})^{\alpha}}_{T_k(\mathbf{x}, \boldsymbol{a})} + R_k(\mathbf{x}, \boldsymbol{a})$$

with
$$R_k(\mathbf{x}, \mathbf{a}) = o(\|\mathbf{x} - \mathbf{a}\|^k)$$
 as $\mathbf{x} \to \mathbf{a}$.
Notation: Multi-index $\alpha \in \mathbb{N}^d$

•
$$|\boldsymbol{\alpha}| = \alpha_1 + \dots + \alpha_d$$

• $\boldsymbol{\alpha}! = \alpha_1! \dots \alpha_d!$
• $\boldsymbol{\alpha}^{\alpha} = x_1^{\alpha_1} \dots x_d^{\alpha_d}$
• $D^{\alpha} f = \frac{\partial^{|\boldsymbol{\alpha}|} f}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}$

TAYLOR'S THEOREM (MULTIVARIATE) / 2

Let us check for bivariate *f* (*d* = 2). For $|\alpha| \leq 1$, we have

α_1	α_2	$ \alpha $	$D^{\alpha}f$	lpha!	$(\mathbf{x} - \mathbf{a})^{lpha}$
0	0	0	f	1	1
1	0	1	$\partial f/\partial x_1$	1	$x_1 - a_1$
0	1	1	$\partial f/\partial x_2$	1	<i>x</i> ₂ - <i>a</i> ₂

and therefore

$$T_{1}(\mathbf{x}, \mathbf{a}) = \frac{f(\mathbf{a})}{1} \cdot 1 + \frac{\partial f(\mathbf{a})}{\partial x_{1}} (x_{1} - a_{1}) + \frac{\partial f(\mathbf{a})}{\partial x_{2}} (x_{2} - a_{2})$$
$$= f(\mathbf{a}) + \left(\frac{\frac{\partial f(\mathbf{a})}{\partial x_{1}}}{\frac{\partial f(\mathbf{a})}{\partial x_{2}}}\right)^{T} \begin{pmatrix} x_{1} - a_{1} \\ x_{2} - a_{2} \end{pmatrix}$$
$$= f(\mathbf{a}) + \nabla f(\mathbf{a})^{T} (\mathbf{x} - \mathbf{a}).$$

TAYLOR SERIES (MULTIVARIATE)

Analogous to univariate case, if *f* ∈ C[∞], there *might* exist an open ball B_r(a) with radius *r* > 0 around a such that the Taylor series

$$\sum_{|\boldsymbol{\alpha}|\geq 0} \frac{D^{\boldsymbol{\alpha}} f(\boldsymbol{a})}{\boldsymbol{\alpha}!} (\mathbf{x} - \boldsymbol{a})^{\boldsymbol{\alpha}}$$

converges to f on $B_r(\mathbf{a})$

- Even if Taylor series converges, it might not converge to f
- Upper bound R = sup {r | Taylor series converges on B_r(a)} is called the radius of convergence of Taylor series around a
- If *R* > 0 and *f* analytic, Taylor series converges *absolutely* and *uniformly* to *f* on *compact* sets inside *B_R(a)*
- No general convergence behaviour on boundary of $B_R(a)$

× 0 0 × 0 × ×