
Optimization in Machine Learning

Mathematical Concepts
Taylor Approximation

Learning goals
Taylor’s theorem (univariate)

Taylor series (univariate)

Taylor’s theorem (multivariate)

Taylor series (multivariate)



TAYLOR APPROXIMATIONS

Mathematically fascinating: Globally approximate function by sum
of polynomials determined by local properties

Extremely important for analyzing optimization algorithms

Geometry of linear and quadratic functions very well understood
=⇒ use them for approximations
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TAYLOR’S THEOREM (UNIVARIATE)

Taylor’s theorem: Let I ⊆ R be an open interval and f ∈ Ck(I,R). For
each a, x ∈ I, it holds that

f (x) =
k∑

j=0

f (j)(a)
j!

(x − a)j

︸ ︷︷ ︸
Tk (x,a)

+Rk(x , a)

with the k -th Taylor polynomial Tk and a remainder term

Rk(x , a) = o(|x − a|k) as x → a.

There are explicit formulas for the remainder

Wording: We “expand f via Taylor around a”
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TAYLOR SERIES (UNIVARIATE)

If f ∈ C∞, it might be expandable around a ∈ I as a Taylor series

∞∑
k=0

f (k)(a)
k!

(x − a)k

If Taylor series converges to f in an interval I0 ⊆ I centered at a
(does not have to), we call f an analytic function

Convergence if Rk(x , a) → 0 as k → ∞ for all x ∈ I0
Then, for all x ∈ I0:

f (x) =
∞∑

j=0

f (j)(a)
j!

(x − a)j
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TAYLOR’S THEOREM (MULTIVARIATE)
Taylor’s theorem (1st order): For f ∈ C1, it holds that

f (x) = f (a) +∇f (a)T (x − a)︸ ︷︷ ︸
T1(x,a)

+R1(x, a).

Example: f (x) = sin(2x1) + cos(x2), a = (1, 1)T . Since ∇f (x) =
(

2 cos(2x1)
− sin(x2)

)
,

f (x) = T1(x) + R1(x, a) = f (a) +∇f (a)T (x − a) + R1(x, a)

= sin(2) + cos(1) + (2 cos(2),− sin(1))T
(

x1 − 1
x2 − 1

)
+ R1(x, a)
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TAYLOR’S THEOREM (MULTIVARIATE) / 2
Taylor’s theorem (2nd order): If f ∈ C2, it holds that

f (x) = f (a) +∇f (a)T (x − a) +
1
2
(x − a)T H(a)(x − a)︸ ︷︷ ︸

T2(x,a)

+R2(x, a)

Example (continued): Since H(x) =
(
−4 sin(2x1) 0

0 − cos(x2)

)
,

f (x) = T1(x, a) +
1
2

(
x1 − 1
x2 − 1

)T (
−4 sin(2) 0

0 − cos(1)

)(
x1 − 1
x2 − 1

)
+ R2(x, a)
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MULTIVARIATE TAYLOR APPROXIMATION

Higher order k gives a better approximation

Tk(x, a) is the best k -th order approximation to f (x) near a

Consider T2(x, a) = f (a) +∇f (a)T (x − a) + 1
2(x − a)T H(a)(x − a).

The first/second/third term ensures the values/slopes/curvatures of T2

and f match at a.

© Optimization in Machine Learning – 6 / 9



TAYLOR’S THEOREM (MULTIVARIATE)

The theorem for general order k requires a more involved notation.
Taylor’s theorem (k -th order): If f ∈ Ck , it holds that

f (x) =
∑
|α|≤k

Dαf (a)
α!

(x − a)α

︸ ︷︷ ︸
Tk (x,a)

+Rk(x, a)

with Rk(x, a) = o(∥x − a∥k) as x → a.
Notation: Multi-index α ∈ Nd

|α| = α1 + · · ·+ αd

α! = α1! · · ·αd !

xα = xα1
1 · · · xαd

d

Dαf = ∂|α|f
∂x

α1
1 ···∂x

αd
d
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TAYLOR’S THEOREM (MULTIVARIATE) / 2

Let us check for bivariate f (d = 2). For |α| ≤ 1, we have

α1 α2 |α| Dαf α! (x − a)α

0 0 0 f 1 1
1 0 1 ∂f/∂x1 1 x1 − a1

0 1 1 ∂f/∂x2 1 x2 − a2

and therefore

T1(x, a) =
f (a)

1
· 1 +

∂f (a)
∂x1

(x1 − a1) +
∂f (a)
∂x2

(x2 − a2)

= f (a) +

(
∂f (a)
∂x1
∂f (a)
∂x2

)T (
x1 − a1

x2 − a2

)
= f (a) +∇f (a)T (x − a).
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TAYLOR SERIES (MULTIVARIATE)

Analogous to univariate case, if f ∈ C∞, there might exist an open
ball Br (a) with radius r > 0 around a such that the Taylor series∑

|α|≥0

Dαf (a)
α!

(x − a)α

converges to f on Br (a)

Even if Taylor series converges, it might not converge to f

Upper bound R = sup {r | Taylor series converges on Br (a)} is
called the radius of convergence of Taylor series around a

If R > 0 and f analytic, Taylor series converges absolutely and
uniformly to f on compact sets inside BR(a)

No general convergence behaviour on boundary of BR(a)
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