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UNIVARIATE DIFFERENTIABILITY

Definition: A function f : S C R — R is said to be differentiable for
each inner point x € S if the following limit exists:

f’(X) = /IvL%f(X—*_hh)_f(X)

Intuitively: f can be approxed locally by a lin. fun. with slope m = f'(x).

Left: Function is differentiable everywhere. Right: Not differentiable at the red point.
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SMOOTH VS. NON-SMOOTH

@ Smoothness of a function f : S — IR is measured by the number
of its continuous derivatives

@ CKis class of k-times continuously differentiable functions
(f € Ck means f(¥) exists and is continuous)

@ In this lecture, we call f “smooth”, if at least f € C'

34 fun
f1

f; is smooth, £, is continuous but not differentiable, and f; is non-continuous.
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MULTIVARIATE DIFFERENTIABILITY

Definition: f : S C RY — R is differentiable in x € S if there exists a
(continuous) linear map V#(x) : S C R — R with

f(x 4+ h) — f(x) — VF(x)"
h—0 ||hl|

Geometrically: The function can be locally approximated by a tangent hyperplane.
Source: https://github.com/jermwatt/machine_learning_refined.
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GRADIENT

@ Linear approximation is given by the gradient: x
of of of  of o\’
Vie eyt L= (2L 9L 0L X
8X1 1+ + Oxd d <8X1 ’ 8x2’ 6Xd>
@ Elements of the gradient are called partial derivatives. x x

@ To compute 0f/0x;, regard f as function of x; only (others fixed)

Example: f(X) = x2/2 + x1x2 + x2 = VI(X) = (x3 + X2, X1 + 2x2) 7
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DIRECTIONAL DERIVATIVE

The directional derivative tells how fast f : S — R is changing w.r.t.
an arbitrary direction v:

Dy(x) = lim f(x + hv) — f(x)

— T,
lim P = Vi(x)' -v.

Example: The directional derivative for v = (1,1) is:

1 of of
Df(x) = Vix)" <1> = o o

NB: Some people require that ||v|| = 1. Then, we can identify D, f(x)
with the instantaneous rate of change in direction v —and in our
example we would have to divide by v/2.
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PROPERTIES OF THE GRADIENT

@ Orthogonal to level curves/surfaces of a function
@ Points in direction of greatest increase of f

ﬂﬂTNR

Proof: Let v be a vector with ||v|| = 1 and 6 the angle between v and V(x).
Duf(x) = V(%) v = | VI(x)|| [[v] cos(8) = [|V(x)]| cos(6)

by the cosine formula for dot products and ||v|| = 1. cos() is maximal if § = 0,
hence if v and V£(x) point in the same direction.
(Alternative proof: Apply Cauchy-Schwarz to V£(x)" v and look for equality.)

Analogous: Negative gradient —Vf(x) points in direction of greatest decrease
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PROPERTIES OF THE GRADIENT /2

Mod. Branin function with neg. grads.
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Length of arrows is norm of their gradient
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JACOBIAN MATRIX

For vector-valued function f = (fi, ..., fn)", fi : S — R, the Jacobian O O X
matrix J; : S — R™*9 generalizes gradient by placing all Vf;in its rows:

0f(x) Of (x) x O

Vh(x) o o
J)=1| =] i X X
Vin(x)7 Oplx) .. Oialx)

@ Jacobian gives best linear approximation of distorted volumes

Source: Wikipedia
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JACOBIAN DETERMINANT

Letf € C'and xg € S.
Inverse function theorem: Let yo = f(Xo). If det(Js(xo)) # 0, then

@ fis invertible in a neighborhood of xg,

Q ' e C" with Ji—1(yo) = Jr(x0) .
@ |det(Jr(xo))|: factor by which f expands/shrinks volumes near xq
o If det(Jr(xo)) > O, f preserves orientation near X
o If det(Jr(xo)) < O, f reverses orientation near X
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HESSIAN MATRIX

For real-valued function f : S — R, the Hessian matrix H : S — R9*¢ X
contains all their second derivatives (if they exist):

2
H(x) = V3f(x) = <gxi(9)2) )
19N =

X X

Note: Hessian of f is Jacobian of Vf
Example: Let f(x) = sin(x1) - cos(2xz). Then:

[ —cos(2x2) - sin(x1) —2cos(xq) - sin(2x2)
A = (‘2 COS(X12) : Sin(2):2) —4 COS(21X2) . sin(xf))

@ If f € C?, then H is symmetric

@ Many local properties (geometry, convexity, critical points) are
encoded by the Hessian and its spectrum (— later)
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LOCAL CURVATURE BY HESSIAN

Eigenvector corresponding to largest (resp. smallest) eigenvalue of O O X
Hessian points in direction of largest (resp. smallest) curvature

Example (previous slide): For a = (—m/2,0)7, we have

H(a) - (1 o) X X

0 4

andthus \y =4, 0, =1, vy = (0,1)7, and v, = (1,0)7.

0.00

“;;oo
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LIPSCHITZ CONTINUITY

Function h: S — R is Lipschitz continuous if slopes are bounded:

||h(x) — h(y)|| < L||x —y|| foreachx,y € S andsome L >0

@ Examples (d = m = 1): sin(x), | x|
@ Not examples: 1/x (but locally Lipschitz continuous), /x
@ If m = d and h differentiable:
h Lipschitz continuous with constant L <= J, < L - Iy
Note: A < B :<=> B — A is positive semidefinite, i.e., v/ (B — A)v > 0 Vv # 0
Proof of “="ford = m=1:

H (x) = lim 7(’(“) — )

e—0 e—)O

m | PCEDZAC)| i g

e—0

—_—
<L

[Proof of “=" by mean value theorem: Show that Amax(Jn) < L.]

Optimization in Machine Learning — 12/13

X X



LIPSCHITZ GRADIENTS
@ Let f € C2. Since V?f is Jacobian of h = Vf (m = d):
Vf Lipschitz continuous with constant L <= V2f < L - 14

@ Equivalently, eigenvalues of V2f are bounded by L

@ Interpretation: Curvature in any direction is bounded by L

@ Lipschitz gradients occur frequently in machine learning
—> Fairly weak assumption

@ Important for analysis of gradient descent optimization
—> Descent lemma (later)
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