Optimization in Machine Learning

Mathematical Concepts Differentiation and Derivatives

Learning goals

- Definition of smoothness
- Uni- & multivariate differentiation
- Gradient, partial derivatives
- Jacobian matrix
- **•** Hessian matrix
- **•** Lipschitz continuity

UNIVARIATE DIFFERENTIABILITY

Definition: A function $f : \mathcal{S} \subseteq \mathbb{R} \to \mathbb{R}$ is said to be **differentiable** for each inner point $x \in S$ if the following limit exists:

$$
f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$

Intuitively: *f* can be approxed locally by a lin. fun. with slope $m = f'(x)$.

Left: Function is differentiable everywhere. **Right:** Not differentiable at the red point.

SMOOTH VS. NON-SMOOTH

- **Smoothness** of a function $f : \mathcal{S} \to \mathbb{R}$ is measured by the number of its continuous derivatives
- \mathcal{C}^k is class of k -times continuously differentiable functions $(f \in \mathcal{C}^k$ means $f^{(k)}$ exists and is continuous)
- In this lecture, we call *f* "smooth", if at least $f \in C^1$

 f_1 is smooth, f_2 is continuous but not differentiable, and f_3 is non-continuous.

© Optimization in Machine Learning – 2 / 13

 \times \times

MULTIVARIATE DIFFERENTIABILITY

Definition: $f : \mathcal{S} \subseteq \mathbb{R}^d \to \mathbb{R}$ is **differentiable** in $\mathbf{x} \in \mathcal{S}$ if there exists a (continuous) linear map $\nabla f(\mathbf{x}) : \mathcal{S} \subseteq \mathbb{R}^d \to \mathbb{R}^d$ with

$$
\lim_{h \to 0} \frac{f(\mathbf{x} + h) - f(\mathbf{x}) - \nabla f(\mathbf{x})^T \cdot h}{||h||} = 0
$$

 \times \times

Geometrically: The function can be locally approximated by a tangent hyperplane. Source: https://github.com/jermwatt/machine_learning_refined.

GRADIENT

Linear approximation is given by the **gradient**:

$$
\nabla f = \frac{\partial f}{\partial x_1} \mathbf{e}_1 + \dots + \frac{\partial f}{\partial x_d} \mathbf{e}_d = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_d} \right)^T
$$

- Elements of the gradient are called **partial derivatives**.
- To compute ∂*f* /∂*x^j* , regard *f* as function of *x^j* only (others fixed)

Example:
$$
f(\mathbf{x}) = x_1^2/2 + x_1x_2 + x_2^2 \Rightarrow \nabla f(\mathbf{x}) = (x_1 + x_2, x_1 + 2x_2)^T
$$

 \times \times

DIRECTIONAL DERIVATIVE

The **directional derivative** tells how fast $f : \mathcal{S} \to \mathbb{R}$ is changing w.r.t. an arbitrary direction *v*:

$$
D_{\mathbf{v}}f(\mathbf{x}) := \lim_{h\to 0}\frac{f(\mathbf{x}+h\mathbf{v})-f(\mathbf{x})}{h} = \nabla f(\mathbf{x})^T\cdot\mathbf{v}.
$$

Example: The directional derivative for $v = (1, 1)$ is:

$$
D_{\mathbf{v}}f(\mathbf{x}) = \nabla f(\mathbf{x})^T \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{\partial f}{\partial x_1} + \frac{\partial f}{\partial x_2}
$$

NB: Some people require that $||v|| = 1$. Then, we can identify $D_v f(x)$ with the instantaneous rate of change in direction *v* – and in our with the instantaneous rate of change in
example we would have to divide by $\sqrt{2}$.

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\end{array}
$$

PROPERTIES OF THE GRADIENT

- **Orthogonal** to level curves/surfaces of a function
- Points in direction of **greatest increase** of *f*

Proof: Let *v* be a vector with $||v|| = 1$ and θ the angle between *v* and $\nabla f(\mathbf{x})$.

$$
D_{\mathbf{v}}f(\mathbf{x}) = \nabla f(\mathbf{x})^T \mathbf{v} = \|\nabla f(\mathbf{x})\| \|\mathbf{v}\| \cos(\theta) = \|\nabla f(\mathbf{x})\| \cos(\theta)
$$

by the cosine formula for dot products and $||\mathbf{v}|| = 1$. $cos(\theta)$ is maximal if $\theta = 0$, hence if **v** and $\nabla f(\mathbf{x})$ point in the same direction. (Alternative proof: Apply Cauchy-Schwarz to $\nabla f(\mathbf{x})^T \mathbf{v}$ and look for equality.) Analogous: Negative gradient −∇*f*(**x**) points in direction of greatest *de*crease

PROPERTIES OF THE GRADIENT /2

Mod. Branin function with neg. grads.

X $\times\overline{\times}$

JACOBIAN MATRIX

For vector-valued function $f = (f_1, \ldots, f_m)^T$, $f_j : \mathcal{S} \to \mathbb{R}$, the **Jacobian** matrix $J_f: \mathcal{S} \rightarrow \mathbb{R}^{m \times d}$ generalizes gradient by placing all ∇f_j in its rows:

$$
J_f(\mathbf{x}) = \begin{pmatrix} \nabla f_1(\mathbf{x})^T \\ \vdots \\ \nabla f_m(\mathbf{x})^T \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_d} \end{pmatrix}
$$

• Jacobian gives best linear approximation of distorted volumes

Source: Wikipedia

JACOBIAN DETERMINANT

Let $f \in \mathcal{C}^1$ and $\mathbf{x}_0 \in \mathcal{S}$.

Inverse function theorem: Let $y_0 = f(x_0)$. If det $(J_f(x_0)) \neq 0$, then

 \bullet *f* is invertible in a neighborhood of x_0 ,

$$
\bullet \ \ f^{-1} \in C^1 \text{ with } J_{f^{-1}}(\mathbf{y}_0) = J_f(\mathbf{x}_0)^{-1}.
$$

- \bullet $|\text{det}(J_f(\mathbf{x}_0))|$: factor by which *f* expands/shrinks volumes near \mathbf{x}_0
- \bullet If det($J_f(\mathbf{x}_0)$) > 0, *f* preserves orientation near \mathbf{x}_0
- \bullet If det($J_f(\mathbf{x}_0)$) < 0, *f* reverses orientation near \mathbf{x}_0

HESSIAN MATRIX

For real-valued function $f : \mathcal{S} \to \mathbb{R}$, the **Hessian** matrix $H : \mathcal{S} \to \mathbb{R}^{d \times d}$ contains all their second derivatives (if they exist):

$$
H(\mathbf{x}) = \nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}\right)_{i,j=1,\dots,d}
$$

Note: Hessian of *f* is Jacobian of ∇*f*

Example: Let $f(\mathbf{x}) = \sin(x_1) \cdot \cos(2x_2)$. Then:

$$
H(\mathbf{x}) = \begin{pmatrix} -\cos(2x_2) \cdot \sin(x_1) & -2\cos(x_1) \cdot \sin(2x_2) \\ -2\cos(x_1) \cdot \sin(2x_2) & -4\cos(2x_2) \cdot \sin(x_1) \end{pmatrix}
$$

- If $f \in C^2$, then *H* is symmetric
- Many local properties (geometry, convexity, critical points) are encoded by the Hessian and its spectrum (\rightarrow later)

LOCAL CURVATURE BY HESSIAN

Eigenvector corresponding to largest (resp. smallest) **eigenvalue** of Hessian points in direction of largest (resp. smallest) **curvature**

Example (previous slide): For $\boldsymbol{a} = (-\pi/2, 0)^T$, we have

$$
H(\mathbf{a}) = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}
$$

and thus $\lambda_1 = 4, \lambda_2 = 1$, $\bm{v}_1 = (0, 1)^T$, and $\bm{v}_2 = (1, 0)^T$.

X \times \times

LIPSCHITZ CONTINUITY Function $h : \mathcal{S} \to \mathbb{R}^m$ is **Lipschitz continuous** if slopes are bounded:

∥*h*(**x**) − *h*(**y**)∥ ≤ *L*∥**x** − **y**∥ for each **x**, **y** ∈ S and some *L* > 0

- **Examples** $(d = m = 1)$ **:** sin(*x*), |*x*|
- **Not** examples: 1/*^x* (but *locally* Lipschitz continuous), [√] *x*
- \bullet If $m = d$ and *h* **differentiable**:

h Lipschitz continuous with constant $L \iff J_h \leq L \cdot I_d$

Note: A \preccurlyeq **B** \blacktriangleright **B** $-$ **A** is positive semidefinite, i.e., $\mathbf{v}^{\mathsf{T}}(\mathbf{B} - \mathbf{A})\mathbf{v} \ge 0$ ∀ $\mathbf{v} \ne 0$

Proof of " \Rightarrow " for $d \equiv m \equiv 1$ **:**

$$
h'(x) = \lim_{\epsilon \to 0} \frac{h(x + \epsilon) - h(x)}{\epsilon} \le \lim_{\epsilon \to 0} \underbrace{\left| \frac{h(x + \epsilon) - h(x)}{\epsilon} \right|}_{\leq L} \le \lim_{\epsilon \to 0} L = L
$$

[Proof of " \Leftarrow " by mean value theorem: Show that $\lambda_{\text{max}}(J_h) \leq L$.]

LIPSCHITZ GRADIENTS

Let $f \in \mathcal{C}^2$. Since $\nabla^2 f$ is Jacobian of $h = \nabla f$ $(m = d)$:

 ∇f Lipschitz continuous with constant $L \Longleftrightarrow \nabla^2 f \preccurlyeq L \cdot \mathbf{I}_d$

- Equivalently, eigenvalues of ∇² *f* are bounded by *L*
- **Interpretation:** Curvature in any direction is bounded by *L*
- Lipschitz gradients occur frequently in machine learning =⇒ Fairly **weak assumption**
- Important for analysis of **gradient descent** optimization
	- \implies Descent lemma (later)

