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UNIVARIATE DIFFERENTIABILITY

Definition: A function f : S ⊆ R→ R is said to be differentiable for
each inner point x ∈ S if the following limit exists:

f ′(x) := lim
h→0

f (x + h)− f (x)
h

Intuitively: f can be approxed locally by a lin. fun. with slope m = f ′(x).

Left: Function is differentiable everywhere. Right: Not differentiable at the red point.
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SMOOTH VS. NON-SMOOTH

Smoothness of a function f : S → R is measured by the number
of its continuous derivatives

Ck is class of k -times continuously differentiable functions
(f ∈ Ck means f (k) exists and is continuous)

In this lecture, we call f “smooth”, if at least f ∈ C1
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f1 is smooth, f2 is continuous but not differentiable, and f3 is non-continuous.
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MULTIVARIATE DIFFERENTIABILITY

Definition: f : S ⊆ Rd → R is differentiable in x ∈ S if there exists a
(continuous) linear map ∇f (x) : S ⊆ Rd → Rd with

lim
h→0

f (x + h)− f (x)−∇f (x)T · h
||h||

= 0

Geometrically: The function can be locally approximated by a tangent hyperplane.

Source: https://github.com/jermwatt/machine_learning_refined.
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GRADIENT

Linear approximation is given by the gradient:

∇f =
∂f
∂x1

e1 + · · ·+ ∂f
∂xd

ed =

(
∂f
∂x1

,
∂f
∂x2

, . . . ,
∂f
∂xd

)T

Elements of the gradient are called partial derivatives.

To compute ∂f/∂xj , regard f as function of xj only (others fixed)

Example: f (x) = x2
1/2 + x1x2 + x2

2 ⇒ ∇f (x) = (x1 + x2, x1 + 2x2)
T
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DIRECTIONAL DERIVATIVE

The directional derivative tells how fast f : S → R is changing w.r.t.
an arbitrary direction v :

Dv f (x) := lim
h→0

f (x + hv)− f (x)
h

= ∇f (x)T · v .

Example: The directional derivative for v = (1, 1) is:

Dv f (x) = ∇f (x)T ·
(

1
1

)
=

∂f
∂x1

+
∂f
∂x2

NB: Some people require that ||v || = 1. Then, we can identify Dv f (x)
with the instantaneous rate of change in direction v – and in our
example we would have to divide by

√
2.
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PROPERTIES OF THE GRADIENT

Orthogonal to level curves/surfaces of a function

Points in direction of greatest increase of f

Proof: Let v be a vector with ∥v∥ = 1 and θ the angle between v and ∇f (x).

Dv f (x) = ∇f (x)T v = ∥∇f (x)∥ ∥v∥ cos(θ) = ∥∇f (x)∥ cos(θ)

by the cosine formula for dot products and ∥v∥ = 1. cos(θ) is maximal if θ = 0,
hence if v and ∇f (x) point in the same direction.
(Alternative proof: Apply Cauchy-Schwarz to ∇f (x)T v and look for equality.)

Analogous: Negative gradient −∇f (x) points in direction of greatest decrease
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PROPERTIES OF THE GRADIENT / 2

Length of arrows is norm of their gradient
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JACOBIAN MATRIX

For vector-valued function f = (f1, . . . , fm)T , fj : S → R, the Jacobian
matrix Jf : S → Rm×d generalizes gradient by placing all ∇fj in its rows:

Jf (x) =

∇f1(x)T

...
∇fm(x)T

 =


∂f1(x)
∂x1

· · · ∂f1(x)
∂xd

...
. . .

...
∂fm(x)
∂x1

· · · ∂fm(x)
∂xd


Jacobian gives best linear approximation of distorted volumes

Source: Wikipedia
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JACOBIAN DETERMINANT

Let f ∈ C1 and x0 ∈ S.
Inverse function theorem: Let y0 = f (x0). If det(Jf (x0)) ̸= 0, then

1 f is invertible in a neighborhood of x0,
2 f−1 ∈ C1 with Jf−1(y0) = Jf (x0)

−1.

|det(Jf (x0))|: factor by which f expands/shrinks volumes near x0

If det(Jf (x0)) > 0, f preserves orientation near x0

If det(Jf (x0)) < 0, f reverses orientation near x0
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HESSIAN MATRIX

For real-valued function f : S → R, the Hessian matrix H : S → Rd×d

contains all their second derivatives (if they exist):

H(x) = ∇2f (x) =
(
∂2f (x)
∂xi∂xj

)
i,j=1,...,d

Note: Hessian of f is Jacobian of ∇f

Example: Let f (x) = sin(x1) · cos(2x2). Then:

H(x) =
(
− cos(2x2) · sin(x1) −2 cos(x1) · sin(2x2)
−2 cos(x1) · sin(2x2) −4 cos(2x2) · sin(x1)

)
If f ∈ C2, then H is symmetric

Many local properties (geometry, convexity, critical points) are
encoded by the Hessian and its spectrum (→ later)
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LOCAL CURVATURE BY HESSIAN

Eigenvector corresponding to largest (resp. smallest) eigenvalue of
Hessian points in direction of largest (resp. smallest) curvature

Example (previous slide): For a = (−π/2, 0)T , we have

H(a) =
(

1 0
0 4

)
and thus λ1 = 4, λ2 = 1, v1 = (0, 1)T , and v2 = (1, 0)T .
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LIPSCHITZ CONTINUITY
Function h : S → Rm is Lipschitz continuous if slopes are bounded:

∥h(x)− h(y)∥ ≤ L∥x − y∥ for each x, y ∈ S and some L > 0

Examples (d = m = 1): sin(x), |x |
Not examples: 1/x (but locally Lipschitz continuous),

√
x

If m = d and h differentiable:

h Lipschitz continuous with constant L ⇐⇒ Jh ≼ L · Id

Note: A ≼ B :⇐⇒ B − A is positive semidefinite, i.e., vT (B − A)v ≥ 0 ∀v ̸= 0

Proof of “⇒” for d = m = 1:

h′(x) = lim
ϵ→0

h(x + ϵ)− h(x)
ϵ

≤ lim
ϵ→0

∣∣∣∣h(x + ϵ)− h(x)
ϵ

∣∣∣∣︸ ︷︷ ︸
≤L

≤ lim
ϵ→0

L = L

[Proof of “⇐” by mean value theorem: Show that λmax(Jh) ≤ L.]
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LIPSCHITZ GRADIENTS

Let f ∈ C2. Since ∇2f is Jacobian of h = ∇f (m = d):

∇f Lipschitz continuous with constant L ⇐⇒ ∇2f ≼ L · Id

Equivalently, eigenvalues of ∇2f are bounded by L

Interpretation: Curvature in any direction is bounded by L

Lipschitz gradients occur frequently in machine learning
=⇒ Fairly weak assumption

Important for analysis of gradient descent optimization
=⇒ Descent lemma (later)
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