
Interpretable Machine Learning

Simple Gradients & Integrated Gradients

Learning goals

Basics of sensitivity analysis

Saliency maps for images and language

integrated gradients



SENSITIVITY ANALYSIS

Neural Networks are differentiable machines

The output can be written as a function of the parameters and input
One can differentiate the output function w.r.t parameters
The underlying idea is used for training Neural Nets using gradient descent

f (x ; θ)
∂f (x ; θ)

∂θ

Sensitivity Analysis: How sensitive is the output f () w.r.t to a small change in the
input?

∂f (x ; θ)
∂x
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SENSITIVITY ANALYSIS

How sensitive is the output f ()w.r.t to a small change in the input ?

If a small change in the input feature causes a large change in output, then
that feature is responsible for the prediction
Back-propagation into the input: instead of computing ∂f (x;θ)

∂θ
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SALIENCY MAPS

Visualize the gradients over each feature

as a heat map or Saliency Maps
Saliency maps are feature attribution methods that are based on gradients
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SALIENCY MAPS FOR IMAGES

Images have multiple channels where each channel is a 2-D matrix

Mij = max
c

|∇x Sc(X)|(i,j,c)
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SALIENCY MAPS FOR LANGUAGE

Words are associated with an embedding

Computing gradients back to the inputs is different in comparison to images
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SALIENCY MAPS FOR LANGUAGE

We obtain gradients per dimension but we want attributions or importance
scores at the level of world

Idea: Simple aggregations of dimension-level gradients like sum, average, etc.
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SALIENCY MAPS - SETTING
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PROBLEMS WITH DEEP NETS
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PERTURBING INPUTS

Small perturbations at the saturation point do not give us interesting gradients

Extreme perturbation (to say a baseline image) can give us interesting gradients
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INTEGRATED GRADIENTS
Compute gradient estimate based on gradients over a path of specific perturbations
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INTEGRATED GRADIENTS
Compute gradient estimate based on gradients over a path of specific perturbations
Choose a Baseline to contrast
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INTEGRATED GRADIENTS

1 Choose a Baseline to contrast
2 Compute gradients at different mask values
3 Attribution = Aggregation over gradients computed for a certain set of

perturbations

Rc
i (x) = xi ·

∫ 1

α=0

∂Sc(x̃)
∂(x̃i)

dα

where x̃ = x + α(x − x)

Integrated Gradients monitors how the network changes from a zero signal input to
actual input through the use of gradients
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BASELINE

Baseline is an information less input

The choice of baselines matters a lot and is typically domain dependent

Black or gray images
Zero embedding in language
Random document in retrieval
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SMOOTHGRAD

Gradients are local ways to measure sensitivity

In highly nonlinear loss surfaces you obtain quite noisy gradients

In this figure, majority of the neighbourhood gives positive gradient
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SMOOTHGRAD

Calculate multiple copies of the input with a small noise (usually Gaussian
noise)

Actual gradient is the average of the gradients of each of the copies
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CONCLUSION

Gradients are central in computing feature attributions and are visualised using
saliency maps

Simple gradient-based approaches for neural networks attribute the importance
back to the input features

Deep learning models suffer from critical problems for gradient-based methods

Models are trained to saturation given near-zero gradients — Integrated
Gradients
Gradients are unstable due to highly non-linear loss surface —
SmoothGrad

Tons of other approaches proposed in the literature

Caution that explanations might disagree with each other

Caution that gradient-based approaches need to be adapted depending on the
input style
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