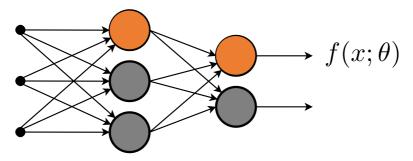

Interpretable Machine Learning

Visualizing Neural Networks


Learning goals

- Visualizing architectural units
- Visualizing filters in CNNs
- Visualizing attention maps

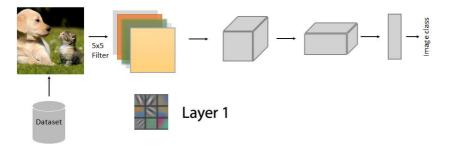
INSPECTING THE MODEL UNITS

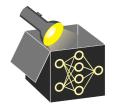
- Neural Networks architectural units can be inspected to provide insights
- What happens to the input signal as it travels through the network ?
 - Activations: Activation in neural networks are sparse
 - Attention units: Encode the importance of input representation units

VISUALIZING NEURAL NETWORK ARCHITECTURAL UNITS

- Search for examples where individual features have high values ----
 - Either for a neuron at an individual position, or for an entire channel

Neuron


Channel



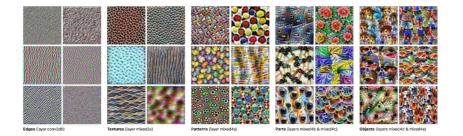
Class Probability

VISUALIZING FILTERS IN A CNN

- Most of the aggregated values at neurons do not result in activations
- Find image patches in dataset that maximally activate/excite a unit

FEATURE EXTRACTION EVOLUTION

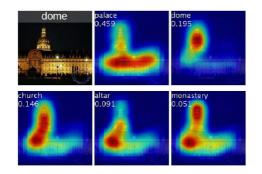
- Lower layers extract lower-level features
- Higher layers compose extracted features to compose high-level features


	_	_	_								-
1		26	1785	THE O	32	1	1		36		
2		de.	(H)		21A		1		4	11	
1	C.	1	H	leff.	il i	112	W	10	9		
4	1	1	0		0		3	3	J.	2	JI
E.		100		0	-))	25	Mi.	
88			0	0	0))		25	1	
11	X	1	Ø.	-	-	t			14	Y	1
SV.	Y	X		14 12		1.	-		5	1	is h
1	N II N	1	X X X	14 17 18		たた		目的	5	123	あると
- 27 - 3	1 4 4 1	ドート	X X X	*	*	1111-1- 素			511	リルシモ	あると
	「日のの	r 2	* * *	*	A . 6	1111			511100	ノルシード	メービアで

* * *	1	14	A	6	6	*	X
* * *	4 5				1	6	1
\$ 300 H	1 2	¥			*	100	
* * 1	10- 12-				-		
***	9 <u>1</u> 0-				-9 <u>1</u> -		
***	产生						
per Ci di	14	8	*				
May 15 (4)	愛笑						
Layer 3	14 14				15		

			X	
La	yer	4		

LAYERWISE VISUALISATION OF CNNS



Interpretable Machine Learning - 5 / 12

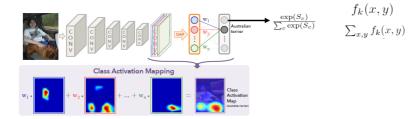
CLASS ACTIVATION MAPS

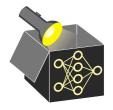
- CAMs are specific to CNNs
- Class activation map or CAM highlights class-specific discriminative regions
 - Different classes induce different activations

CLASS ACTIVATION MAPS

- Let the activation at unit k, at the location (x,y) in the last layer $-f_k(x,y)$
- Global avg. pooling at unit $k F_k = \sum_{x,y} f_k(x, y)$
- For a given class

$$P_c = rac{exp(S_c)}{\sum_c exp(S_c)}, \quad S_c = \sum_k w_k^c F_k$$




CLASS ACTIVATION MAPS

- Input: Take a pre-trained CNN model
- Output: weight vectors for each classes
- How do we learn the weights?
 - Average pooling of the feature maps in the last layer

$$S_c = \sum_k w_k^c F_k$$

• Weights learned using simple logistic regression

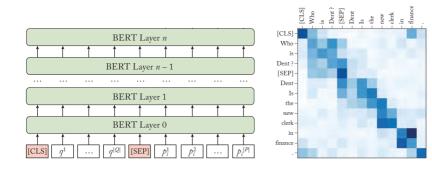
ATTENTION IN LANGUAGE

- Attention mechanism in neural language models is crucial for extracting latent features
- Self-attention in language is aimed at re-representing the initial representation based on the context
- Neural models consume non-contextual token-level representations and output contextual token-level representation

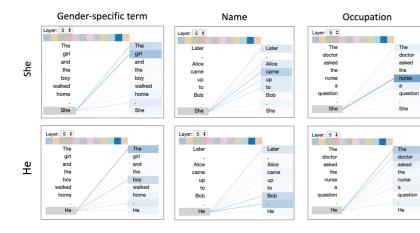
New contextual representation $\mathbf{x}' = \alpha_{u} \mathbf{u} + \alpha_{v} \mathbf{v} + \alpha_{w} \mathbf{w}$

ATTENTION IN LANGUAGE

- Attention mechanism in neural language models is crucial for extracting latent features
- Self-attention in language is aimed at re-representing the initial representation based on the context
- Neural models consume non-contextual token-level representations and output contextual token-level representation



New contextual representation $\mathbf{x}' = \alpha_u \mathbf{u} + \alpha_v \mathbf{v} + \alpha_w \mathbf{w}$


$$\alpha_u = \frac{e^{sim(u,x)}}{e^{sim(u,x)} + e^{sim(v,x)} + e^{sim(w,x)}}; \quad sim(u,x) = x \cdot Wu$$

ATTENTION MAPS IN TRANSFORMERS

VISUALIZING ATTENTION UNITS

Interpretable Machine Learning - 11 / 12

OTHER INTERACTIVE VISUALISATIONS

- Interactive visualization by Chris Olah: https://distill.pub/2018/building-blocks/
- $\bullet \ https://distill.pub/2017/feature-visualization/$
- Deep Dream

• . . .

- De-Convolution
- \bullet Visualizations in Language: $\rm https://github.com/jessevig/bertviz$

