Interpretable Machine Learning

Visualizing Neural Networks

Learning goals

f(z;0) @ Visualizing architectural units
@ Visualizing filters in CNNs
@ Visualizing attention maps




INSPECTING THE MODEL UNITS

@ Neural Networks architectural units can be inspected to provide insights
@ What happens to the input signal as it travels through the network ?

e Activations: Activation in neural networks are sparse
e Attention units: Encode the importance of input representation units
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MII\ISII'IJ'QLIZING NEURAL NETWORK ARCHITECTURAL

@ Search for examples where individual features have high values —
e Either for a neuron at an individual position, or for an entire channel
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VISUALIZING FILTERS IN A CNN

@ Most of the aggregated values at neurons do not result in activations
@ Find image patches in dataset that maximally activate/excite a unit
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FEATURE EXTRACTION EVOLUTION

@ Lower layers extract lower-level features
@ Higher layers compose extracted features to compose high-level features

Interpretable Machine Learning — 4/12



LAYERWISE VISUALISATION OF CNNS

Edges (layer conv2d0) Textures (ayer mbed3a) Patterns (layer mixedda) Parts (layers mixeddb & mixeddc) Objects (layers mixecad & mixedée)
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CLASS ACTIVATION MAPS

@ CAMs are specific to CNNs
@ Class activation map or CAM highlights class-specific discriminative regions
e Different classes induce different activations
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CLASS ACTIVATION MAPS

@ Let the activation at unit k, at the location (x,y) in the last layer -f(x, y)

@ Global avg. pooling at unit k - Fx = > f(x, y)
X,y
@ For a given class
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CLASS ACTIVATION MAPS

@ Input: Take a pre-trained CNN model
@ Output: weight vectors for each classes
@ How do we learn the weights?
e Average pooling of the feature maps in the last layer
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e Weights learned using simple logistic regression
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ATTENTION IN LANGUAGE

@ Attention mechanism in neural language models is crucial for extracting latent
features

@ Self-attention in language is aimed at re-representing the initial representation
based on the context

@ Neural models consume non-contextual token-level representations and output
contextual token-level representation
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ATTENTION MAPS IN TRANSFORMERS
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VISUALIZING ATTENTION UNITS

Gender-specific term Name Occupation
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OTHER INTERACTIVE VISUALISATIONS

@ Interactive visualization by Chris Olah:

https://distill.pub/2018 /building-blocks/
https://distill.pub /2017 /feature- visualization/
Deep Dream

De-Convolution
Visualizations in Language: https://github.com /jessevig/bertviz
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