Interpretable Machine Learning

Pitfalls and Best Practices

- General pitfalls of interpretation methods
- Practices to avoid pitfalls

SOURCES OF PITFALLS Moinar et. al (2021)

ISSUES OF ML MODEL Molnar et. al (2021)

• **Proper training and evaluation**: To gain insights into DGP, deployed model should generalize well to unseen data (garbage in, garbage out)

ISSUES OF ML MODEL Molnar et. al (2021)

• **Proper training and evaluation**: To gain insights into DGP, deployed model should generalize well to unseen data (garbage in, garbage out) $Example: X_1, X_2, X_3 \sim Unif(-3,3)$ with $Y = X_1^2 + X_2 - 5X_1X_2 + \epsilon$, $\epsilon \sim \mathcal{N}(0,5)$ Figure: PDP of DGP (true effect), linear regression model (underfitted), random forest (overfitted), and SVM with radial basis kernel (good fit).

ISSUES OF ML MODEL Molnar et. al (2021)

 Avoid unnecessary complexity: Prefer simple interpretable models and use them as baseline, move to more complex models if performance not sufficient

ISSUES OF IML METHOD Molnar et. al (2021)

- Consider dependencies: Some interpretation methods have issues in case of dependent features
 - → Check presence of dependencies and use suitable interpretation methods

ISSUES OF IML METHOD Molnar et. al (2021)

- Consider dependencies: Some interpretation methods have issues in case of dependent features
 - → Check presence of dependencies and use suitable interpretation methods Example: Explanations may rely on unreliable pred. where model extrapolated

ISSUES OF IML METHOD Molnar et. al (2021)

- Consider dependencies: Some interpretation methods have issues in case of dependent features
 - ~ Check presence of dependencies and use suitable interpretation methods Example: Explanations may rely on unreliable pred. where model extrapolated

 Beware of simplifications: Mapping of complex models to low-dim. explanations → Information loss, e.g., some interpretation methods hide interactions or heterogeneous effects (Figure: PDP and ICE Curves)

INTERPRETATIONS WITH DEPENDENT FEATURES

- Highly correlated features contain similar information
 - \leadsto Model might pick only 1 feat. (regularization), even if it is causally irrelevant
 - → Produced explanations can be misleading (true to model, but not to data)
 - → E.g., different interpretable models produce different results

INTERPRETATIONS WITH DEPENDENT FEATURES

- Highly correlated features contain similar information
 - → Model might pick only 1 feat. (regularization), even if it is causally irrelevant
 - → Produced explanations can be misleading (true to model, but not to data)
 - \rightsquigarrow E.g., different interpretable models produce different results
- **Example:** Simulate 100 obs. from DGP $Y = 0.2(X_1 + \cdots + X_5) + \epsilon, \epsilon \sim N(0, 1)$

- $X_1, \ldots, X_4 \sim N(0, 2)$ (uncorrelated)
- $X_5 = X_4 + \delta, \delta \sim N(0, 0.3) \Rightarrow \rho(X_4, X_5) = 0.98$ (highly correlated)
- LASSO: Shrinks coef. of X_5 to zero, coef. of X_4 about 1.5× higher
- Ridge: Similar coef. for X_4 and X_5 for higher lambda

EXTRAPOLATION DUE TO DEPENDENCIES

- Many interpretation methods are based on artificially created data points
 - → Many points lie in low-density regions if features are dependent
 - → Predictions in such regions have high uncertainty
 - → Explanations can be biased if they rely on pred. where model extrapolated

EXTRAPOLATION DUE TO DEPENDENCIES

- Many interpretation methods are based on artificially created data points
 - → Many points lie in low-density regions if features are dependent
 - → Predictions in such regions have high uncertainty
 - → Explanations can be biased if they rely on pred. where model extrapolated
- There is no definition of when a model extrapolates and to what degree
 - → Severity of extrapolation depends on model
 - Density of train data may helps identify regions where extrapolation is likely But: Density estimation in many dimensions is often infeasible

ISSUE: WRONG USE OF IML METHOD Molnar et. al (2021)

• Quantify uncertainty: Interpretation methods are often (statistical) estimators → Beware of uncertainty, we may need confidence intervals

ISSUE: WRONG USE OF IML METHOD Molnar et. al (2021)

Quantify uncertainty: Interpretation methods are often (statistical) estimators → Beware of uncertainty, we may need confidence intervals Example: Left plot (IML method output) misleading compared to fitted models in right plot

ISSUE: WRONG USE OF IML METHOD Molnar et. al (2021)

Quantify uncertainty: Interpretation methods are often (statistical) estimators → Beware of uncertainty, we may need confidence intervals Example: Left plot (IML method output) misleading compared to fitted models in right plot

