# Interpretable Machine Learning

# **Pitfalls and Best Practices**



#### Learning goals

- General pitfalls of interpretation methods
- Practices to avoid pitfalls



#### SOURCES OF PITFALLS Molnar et. al (2021)





#### ISSUES OF ML MODEL (> Molnar et. al (2021)

• **Proper training and evaluation**: To gain insights into DGP, deployed model should generalize well to unseen data (garbage in, garbage out)



#### ISSUES OF ML MODEL Molnar et. al (2021)

Proper training and evaluation: To gain insights into DGP, deployed model should generalize well to unseen data (garbage in, garbage out)
 Example: X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> ~ Unif(-3, 3) with Y = X<sub>1</sub><sup>2</sup> + X<sub>2</sub> - 5X<sub>1</sub>X<sub>2</sub> + ε, ε ~ N(0, 5)
 Figure: PDP of DGP (true effect), linear regression model (underfitted), random forest (overfitted), and SVM with radial basis kernel (good fit).





#### ISSUES OF ML MODEL Moinar et. al (2021)

Proper training and evaluation: To gain insights into DGP, deployed model should generalize well to unseen data (garbage in, garbage out)
 Example: X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> ~ Unif(-3, 3) with Y = X<sub>1</sub><sup>2</sup> + X<sub>2</sub> - 5X<sub>1</sub>X<sub>2</sub> + ε, ε ~ N(0, 5)
 Figure: PDP of DGP (true effect), linear regression model (underfitted), random forest (overfitted), and SVM with radial basis kernel (good fit).





• Avoid unnecessary complexity: Prefer simple interpretable models and use them as baseline, move to more complex models if performance not sufficient

### ISSUES OF IML METHOD Molnar et. al (2021)

• **Consider dependencies**: Some interpretation methods have issues in case of dependent features

~ Check presence of dependencies and use suitable interpretation methods



#### ISSUES OF IML METHOD (> Molnar et. al (2021)

 Consider dependencies: Some interpretation methods have issues in case of dependent features

 $\sim$  Check presence of dependencies and use suitable interpretation methods *Example:* Explanations may rely on unreliable pred. where model extrapolated





#### ISSUES OF IML METHOD (> Molnar et. al (2021)

• **Consider dependencies**: Some interpretation methods have issues in case of dependent features

→ Check presence of dependencies and use suitable interpretation methods *Example:* Explanations may rely on unreliable pred. where model extrapolated



 Beware of simplifications: Mapping of complex models to low-dim. explanations
 → Information loss, e.g., some interpretation methods hide interactions or heterogeneous effects (Figure: PDP and ICE Curves)





# INTERPRETATIONS WITH DEPENDENT FEATURES

Highly correlated features contain similar information
 → Model might pick only 1 feat. (regularization), even if it is causally irrelevant
 → Produced explanations can be misleading (true to model, but not to data)
 → E.g., different interpretable models produce different results



# INTERPRETATIONS WITH DEPENDENT FEATURES

- Highly correlated features contain similar information
   → Model might pick only 1 feat. (regularization), even if it is causally irrelevant
   → Produced explanations can be misleading (true to model, but not to data)
   → E.g., different interpretable models produce different results
- **Example:** Simulate 100 obs. from DGP  $Y = 0.2(X_1 + \cdots + X_5) + \epsilon, \epsilon \sim N(0, 1)$



- $X_1,\ldots,X_4\sim N(0,2)$  (uncorrelated)
- $X_5 = X_4 + \delta, \delta \sim N(0, 0.3) \Rightarrow 
  ho(X_4, X_5) = 0.98$  (highly correlated)
- LASSO: Shrinks coef. of  $X_5$  to zero, coef. of  $X_4$  about  $1.5 \times$  higher
- Ridge: Similar coef. for  $X_4$  and  $X_5$  for higher lambda



#### **EXTRAPOLATION DUE TO DEPENDENCIES**





- Many interpretation methods are based on artificially created data points
  - $\rightsquigarrow$  Many points lie in low-density regions if features are dependent
  - $\rightsquigarrow$  Predictions in such regions have high uncertainty
  - $\rightsquigarrow$  Explanations can be biased if they rely on pred. where model extrapolated

### **EXTRAPOLATION DUE TO DEPENDENCIES**





- Many interpretation methods are based on artificially created data points
  - $\rightsquigarrow$  Many points lie in low-density regions if features are dependent
  - $\rightsquigarrow$  Predictions in such regions have high uncertainty
  - $\rightsquigarrow$  Explanations can be biased if they rely on pred. where model extrapolated
- There is no definition of when a model extrapolates and to what degree
  - $\rightsquigarrow$  Severity of extrapolation depends on model
  - → Density of train data may helps identify regions where extrapolation is likely But: Density estimation in many dimensions is often infeasible

### ISSUE: WRONG USE OF IML METHOD (> Molnar et. al (2021)

• Quantify uncertainty: Interpretation methods are often (statistical) estimators ~> Beware of uncertainty, we may need confidence intervals



# ISSUE: WRONG USE OF IML METHOD Molnar et. al (2021)

• Quantify uncertainty: Interpretation methods are often (statistical) estimators ~> Beware of uncertainty, we may need confidence intervals *Example:* Left plot (IML method output) misleading compared to fitted models in right plot





# ISSUE: WRONG USE OF IML METHOD Molnar et. al (2021)

• Quantify uncertainty: Interpretation methods are often (statistical) estimators ~> Beware of uncertainty, we may need confidence intervals *Example:* Left plot (IML method output) misleading compared to fitted models in right plot



• **Careful with causality**: Want to understand the model or the nature of DGP? ~ Goal should guide the choice of interpretation method

