Interpretable Machine Learning

Pitfalls and Best Practices

=

Learning goals
' @ General pitfalls of interpretation methods
~ @ Practices to avoid pitfalls



SOURCES OF PITFALLS

Data > ML Model > IML Method > Interpretation
Sources of Pitfalls
Issues of ML model Issues of IML method Issues due to wrong
use of IML method
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ISSUES OF ML MODEL

@ Proper training and evaluation: To gain insights into DGP, deployed model h‘

should generalize well to unseen data (garbage in, garbage out) §
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ISSUES OF ML MODEL

@ Proper training and evaluation: To gain insights into DGP, deployed model
should generalize well to unseen data (garbage in, garbage out)
Example: X1, Xo, X3 ~ Unif(—3,3) with Y = X? + Xo — 5X; X2 + ¢, ¢ ~ N(0,5)
Figure: PDP of DGP (true effect), linear regression model (underfitted), random
forest (overfitted), and SVM with radial basis kernel (good fit).
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@ Avoid unnecessary complexity: Prefer simple interpretable models and use
them as baseline, move to more complex models if performance not sufficient
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ISSUES OF IML METHOD

@ Consider dependencies: Some interpretation methods have issues in case of ;
dependent features

~ Check presence of dependencies and use suitable interpretation methods @o
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ISSUES OF IML METHOD

@ Consider dependencies: Some interpretation methods have issues in case of

dependent features

~~ Check presence of dependencies and use suitable interpretation methods
Example: Explanations may rely on unreliable pred. where model extrapolated
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ISSUES OF IML METHOD

@ Consider dependencies: Some interpretation methods have issues in case of
dependent features
~~ Check presence of dependencies and use suitable interpretation methods
Example: Explanations may rely on unreliable pred. where model extrapolated
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@ Beware of simplifications: Mapping of
complex models to low-dim. explanations ,
~> Information loss, e.g., some interpretation
methods hide interactions or heterogeneous
effects (Figure: PDP and ICE Curves)
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INTERPRETATIONS WITH DEPENDENT FEATURES

@ Highly correlated features contain similar information
~» Model might pick only 1 feat. (regularization), even if it is causally irrelevant
~~ Produced explanations can be misleading (true to model, but not to data)
~+ E.g., different interpretable models produce different results
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INTERPRETATIONS WITH DEPENDENT FEATURES

@ Highly correlated features contain similar information
~» Model might pick only 1 feat. (regularization), even if it is causally irrelevant
~~ Produced explanations can be misleading (true to model, but not to data)
~+ E.g., different interpretable models produce different results

e Example: Simulate 100 obs. from DGP Y = 0.2(X; +--- 4+ X5) +¢,¢ ~ N(0, 1)
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Lasso / lambda Ridge / lambda

Xi, ..., Xq ~ N(0,2) (uncorrelated)

Xs = X4+ 9,6 ~ N(0,0.3) = p(Xs, Xs) = 0.98 (highly correlated)
LASSO: Shrinks coef. of X5 to zero, coef. of X; about 1.5x higher
Ridge: Similar coef. for X4 and X5 for higher lambda
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EXTRAPOLATION DUE TO DEPENDENCIES
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@ Many interpretation methods are based on artificially created data points
~+ Many points lie in low-density regions if features are dependent

~» Predictions in such regions have high uncertainty

~ Explanations can be biased if they rely on pred. where model extrapolated
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@ Many interpretation methods are based on artificially created data points

~+ Many points lie in low-density regions if features are dependent

~» Predictions in such regions have high uncertainty

~ Explanations can be biased if they rely on pred. where model extrapolated

@ There is no definition of when a model extrapolates and to what degree

~ Severity of extrapolation depends on model

~ Density of train data may helps identify regions where extrapolation is likely
But: Density estimation in many dimensions is often infeasible
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ISSUE: WRONG USE OF IML METHOD

@ Quantify uncertainty: Interpretation methods are often (statistical) estimators ;

~ Beware of uncertainty, we may need confidence intervals g
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ISSUE: WRONG USE OF IML METHOD

@ Quantify uncertainty: Interpretation methods are often (statistical) estimators
~~ Beware of uncertainty, we may need confidence intervals
Example: Left plot (IML method output) misleading compared to fitted models in

right plot
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@ Careful with causality: Want to understand the model or the nature of DGP?
~» Goal should guide the choice of interpretation method
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