Interpretable Machine Learning

Increasing Trust in Explanations
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MOTIVATION & IMPORTANT PROPERTIES

@ Local explanations should not only make a model interpretable but also reveal if
the model is trustworthy
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MOTIVATION & IMPORTANT PROPERTIES

@ Local explanations should not only make a model interpretable but also reveal if
the model is trustworthy
@ Interpretable: “Why did the model come up with this decision?”
@ Trustworthy: “How certain is this explanation?”
@ accurate insights into the inner workings of our model

e Failure case: generation is based on inputs in areas where the model
was trained with little or no training data (extrapolation)
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MOTIVATION & IMPORTANT PROPERTIES

@ Local explanations should not only make a model interpretable but also reveal if
the model is trustworthy
@ Interpretable: “Why did the model come up with this decision?”
@ Trustworthy: “How certain is this explanation?”
@ accurate insights into the inner workings of our model
e Failure case: generation is based on inputs in areas where the model
was trained with little or no training data (extrapolation)
© robust (i.e. low variance)
e Expectation: similar explanations for similar data points with similar
predictions
e However, multiple sources of uncertainty exist
~~ measure how robust an IML method is to small changes in the input

data or parameters
~ |s an observation out-of-distribution?
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MOTIVATION & IMPORTANT PROPERTIES

@ Local explanations should not only make a model interpretable but also reveal if
the model is trustworthy

@ Interpretable: “Why did the model come up with this decision?”

@ Trustworthy: “How certain is this explanation?”
@ accurate insights into the inner workings of our model
e Failure case: generation is based on inputs in areas where the model
was trained with little or no training data (extrapolation)
© robust (i.e. low variance)
e Expectation: similar explanations for similar data points with similar
predictions
e However, multiple sources of uncertainty exist
~~ measure how robust an IML method is to small changes in the input
data or parameters
~+ Is an observation out-of-distribution?
@ Failing in one of these ~~ undermining users’ trust in the explanations
~~ undermining trust in the model
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OUT-OF-DISTRIBUTION DETECTION

@ Models are unreliable in areas with little data support
~+ explanations from local explanation methods are unreliable
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OUT-OF-DISTRIBUTION DETECTION

@ Models are unreliable in areas with little data support
~ explanations from local explanation methods are unreliable

@ For local explanation methods, the following components could be
out-of-distribution (OOD):
e The data for LIME’s surrogate model
e Counterfactuals themselves
e Shapley value’s permuted observations to calculate the marginal
contributions
e ICE curves grid data points
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OUT-OF-DISTRIBUTION DETECTION

@ Models are unreliable in areas with little data support
~ explanations from local explanation methods are unreliable

@ For local explanation methods, the following components could be
out-of-distribution (OOD):
e The data for LIME’s surrogate model
e Counterfactuals themselves
e Shapley value’s permuted observations to calculate the marginal
contributions
e ICE curves grid data points

@ Two very simple and intuitive approaches
e Classifier for out-of-distribution
e Clustering

@ More complicated also possible, e.g., variational autoencoders [Daxberger et al.
2020]
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OUT-OF-DISTRIBUTION DETECTION:
OOD-CLASSIFIER

@ Problem: we have only in-distribution data
@ l|dea: Hallucinate new (out-of-distribution) data by randomly sample data points
~> Learn a binary classifier to distinguish between the origins of the data
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OUT-OF-DISTRIBUTION DETECTION:
OOD-CLASSIFIER

@ Problem: we have only in-distribution data
@ l|dea: Hallucinate new (out-of-distribution) data by randomly sample data points
~> Learn a binary classifier to distinguish between the origins of the data

@ Study whether an explanation approach can be fooled

e Hide bias in the true (deployed) model, but use an unbiased model for all
out-of-distribution samples

~~ Important way to diagnose an explanation approach
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OUT-OF-DISTRIBUTION DETECTION: CLUSTERING
VIA DBSCAN

@ DBSCAN is a data clustering algorithm b

(Density-Based Spatial Clustering of Applications with Noise)
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OUT-OF-DISTRIBUTION DETECTION: CLUSTERING
VIA DBSCAN

@ DBSCAN is a data clustering algorithm
(Density-Based Spatial Clustering of Applications with Noise)

@ For this method, we define an e-neighborhood:
Given a dataset X = {x(}7_,, an e-neighborhood for x € X is defined as

No(x) = {x) € x|d(x,x") < e}

d(+) is a distance measure (e.g., Euclidean or Gower distance)
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@ DBSCAN is a data clustering algorithm
(Density-Based Spatial Clustering of Applications with Noise)

@ For this method, we define an e-neighborhood:
Given a dataset X = {x()}7_,, an e-neighborhood for x € X’ is defined as

No(x) = {x) € x|d(x,x") < e}

d(+) is a distance measure (e.g., Euclidean or Gower distance)

@ Core observations x
e Have at least m data points within AV, (x)
e Forms an own cluster with all its neighborhood points
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@ Core observations x
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OUT-OF-DISTRIBUTION DETECTION: CLUSTERING
VIA DBSCAN

@ DBSCAN is a data clustering algorithm
(Density-Based Spatial Clustering of Applications with Noise)

@ For this method, we define an e-neighborhood:
Given a dataset X = {x()}7_,, an e-neighborhood for x € X’ is defined as

No(x) = {x) € x|d(x,x") < e}

d(+) is a distance measure (e.g., Euclidean or Gower distance)
@ Core observations x
e Have at least m data points within AV, (x)
e Forms an own cluster with all its neighborhood points
@ Border points
o Within NV (x)
e Part of a cluster defined by a core point
@ Noise points
e Are not within N(x)
o Not part of any cluster
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OUT-OF-DISTRIRIITION DETECTION
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Example for DBSCAN, circles display e-neighborhoods, m = 4
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@ In-distribution: new point lies within a
cluster
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@ In-distribution: new point lies within a
cluster

@ Out-of-distribution: new point lies
outside the clusters
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OUT-OF-DISTRIRIITION DETECTION
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L T neighborhood of core points, it is a
Example for DBSCAN, circles display e-neighborhoods, m = 4 noise pOint
@ In-distribution: new point lies within a
cluster

@ Out-of-distribution: new point lies
outside the clusters

@ Disadvantages:

e Depending on the distance metric d(-), DBSCAN could suffer from the
“curse of dimensionality”
e The choice of € and mis not clear a-priori
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ROBUSTNESS

@ Differentiate between different kinds of uncertainty:
@ Explanation uncertainty: Change of explanation if we repeat the
process, €.g., the explanation could differ depending on which subset of
data we use for the explanation method and which hyperparameters
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ROBUSTNESS

@ Differentiate between different kinds of uncertainty:

@ Explanation uncertainty: Change of explanation if we repeat the
process, €.g., the explanation could differ depending on which subset of
data we use for the explanation method and which hyperparameters

© Process uncertainty: Change of explanation if the underlying model is
changed
~~ are ML models non-robust, e.g., because they are trained on noisy
data?
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ROBUSTNESS

@ Differentiate between different kinds of uncertainty:

@ Explanation uncertainty: Change of explanation if we repeat the
process, €.g., the explanation could differ depending on which subset of
data we use for the explanation method and which hyperparameters

© Process uncertainty: Change of explanation if the underlying model is
changed
~~ are ML models non-robust, e.g., because they are trained on noisy
data?

@ We focus on explanation uncertainty

e Even with the same model and same (or similar) data points, we can
receive different explanations
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ROBUSTNESS MEASURE FOR LIME AND SHAP

@ Objective: Similar explanations for similar inputs (in a neighborhood)
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ROBUSTNESS MEASURE FOR LIME AND SHAP

@ Objective: Similar explanations for similar inputs (in a neighborhood)

@ For LIME and SHAP, notion of stability based on locally Lipschitz continuity
L Avaroz Wlis and Jazkiola 2015 3

An explanation method g : X — R is locally Lipschitz if

o for every xq € X there existd > 0andw € R
e such that ||x — Xo|| < ¢ implies ||g(x) — g(xo)|| < w||x — Xo
Note that, for LIME, g returns the m coefficients of the surrogate model
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ROBUSTNESS MEASURE FOR LIME AND SHAP

@ Objective: Similar explanations for similar inputs (in a neighborhood)
@ For LIME and SHAP, notion of stability based on locally Lipschitz continuity

» Alvarez-Melis and Jaakkola 2018 J

An explanation method g : X — R is locally Lipschitz if

o for every xq € X there existd > 0andw € R
e such that ||x — Xo|| < & implies ||g(x) — g(Xo)|| < w]||x — Xo
Note that, for LIME, g returns the m coefficients of the surrogate model

@ According to this, we can quantify the robustness of explanation models in
terms of w:
~ The closer w is to 0, the more robust our explanation method is
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ROBUSTNESS MEASURE FOR LIME AND SHAP

@ Objective: Similar explanations for similar inputs (in a neighborhood)
@ For LIME and SHAP, notion of stability based on locally Lipschitz continuity

» Alvarez-Melis and Jaakkola 2018 J

An explanation method g : X — RR™ is locally Lipschitz if

o for every xq € X there existd > 0andw € R
e such that ||x — Xo|| < & implies ||g(x) — g(Xo)|| < w]||x — Xo
Note that, for LIME, g returns the m coefficients of the surrogate model

@ According to this, we can quantify the robustness of explanation models in
terms of w:
~ The closer w is to 0, the more robust our explanation method is

@ w is rarely known a-priori but it could be estimated as follows:

_ ()
() € argmax 1909 — 901l

x(DeN(x) (X, x(l)) ’

where N,(x) is the e-neighborhood of x
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