Interpretable Machine Learning

Methods & Discussion of CEs

Learning goals

- See two strategies to generate CEs
- Know problems and limitations of CEs

Currently, multiple methods exist to calculate counterfactuals. They mainly differ in:

Targets: Most methods focus on classification models, only few cover regression models

 \rightsquigarrow so far, all methods remain in the supervised learning paradigm

- **Targets:** Most methods focus on classification models, only few cover regression models
	- \rightarrow so far, all methods remain in the supervised learning paradigm
- **Data:** Methods mainly focus on tabular data, few on visual/text data, none on audio data

- **Targets:** Most methods focus on classification models, only few cover regression models
	- \rightarrow so far, all methods remain in the supervised learning paradigm
- **Data:** Methods mainly focus on tabular data, few on visual/text data, none on audio data
- **Feature space:** Some methods can only handle numerical features, few can process mixed (numerical and discrete) feature spaces

- **Targets:** Most methods focus on classification models, only few cover regression models
	- \rightarrow so far, all methods remain in the supervised learning paradigm
- **Data:** Methods mainly focus on tabular data, few on visual/text data, none on audio data
- **Feature space:** Some methods can only handle numerical features, few can process mixed (numerical and discrete) feature spaces
- **Objectives:** Many methods focus on action guidance, plausibility and sparsity, few on other objectives like fairness or individual preferences

- **Targets:** Most methods focus on classification models, only few cover regression models
	- \rightarrow so far, all methods remain in the supervised learning paradigm
- **Data:** Methods mainly focus on tabular data, few on visual/text data, none on audio data
- **Feature space:** Some methods can only handle numerical features, few can process mixed (numerical and discrete) feature spaces
- **Objectives:** Many methods focus on action guidance, plausibility and sparsity, few on other objectives like fairness or individual preferences
- **Model access:** Methods either require access to complete model internals, access to gradients, or only to prediction functions \Rightarrow Model-agnostic and model-specific methods exist

- **Targets:** Most methods focus on classification models, only few cover regression models
	- \rightarrow so far, all methods remain in the supervised learning paradigm
- **Data:** Methods mainly focus on tabular data, few on visual/text data, none on audio data
- **Feature space:** Some methods can only handle numerical features, few can process mixed (numerical and discrete) feature spaces
- **Objectives:** Many methods focus on action guidance, plausibility and sparsity, few on other objectives like fairness or individual preferences
- **Model access:** Methods either require access to complete model internals, access to gradients, or only to prediction functions \Rightarrow Model-agnostic and model-specific methods exist
- **Optimization tool:** Gradient-based algorithms (only for differentiable models), mixed-integer programming (only linear), or gradient-free algorithms e.g. Nelder-Mead, genetic algorithm

- **Targets:** Most methods focus on classification models, only few cover regression models
	- \rightarrow so far, all methods remain in the supervised learning paradigm
- **Data:** Methods mainly focus on tabular data, few on visual/text data, none on audio data
- **Feature space:** Some methods can only handle numerical features, few can process mixed (numerical and discrete) feature spaces
- **Objectives:** Many methods focus on action guidance, plausibility and sparsity, few on other objectives like fairness or individual preferences
- **Model access:** Methods either require access to complete model internals, access to gradients, or only to prediction functions \Rightarrow Model-agnostic and model-specific methods exist
- **Optimization tool:** Gradient-based algorithms (only for differentiable models), mixed-integer programming (only linear), or gradient-free algorithms e.g. Nelder-Mead, genetic algorithm
- **Rashomon Effect:** Many methods return a single counterfactual per run, some multiple counterfactuals, others prioritize CEs or let the user choose

FIRST OPTIMIZATION METHOD \rightarrow [Wachter et. al \(2018\)](http://dx.doi.org/10.2139/ssrn.3063289)

Introduced counterfactual explanations in the context of ML predictions by solving

$$
\argmin_{\mathbf{x}'} \max_{\lambda} \lambda \underbrace{(\hat{f}(\mathbf{x}') - y')^2}_{o_p(\hat{f}(\mathbf{x}'), y')} + \underbrace{\sum_{j=1}^p |x'_j - x_j| / MAD_j}_{o_f(\mathbf{x}', \mathbf{x})}
$$
(1)

MAD^j is the median absolute deviation of feature *j*. In each iteration, optimizers like Nelder-Mead solve the equation for x' and then λ is increased until a sufficiently close solution is found

This optimization problem has several shortcomings:

- \bullet We do not know how to choose λ a priori
- \bullet Due to the maximization of λ , we focus primarily on the minimization of o_p \rightsquigarrow only if $\hat{f}(\mathbf{x}') = y'$, we focus on minimizing o_i
- Definition of o_f only covers numerical features
- Other objectives such as sparsity and plausibility of counterfactuals are neglected

MULTI-OBJECTIVE COUNTERFACTUAL EXPLANATIONS \rightarrow [Dandl et al. \(2020\)](https://arxiv.org/abs/2004.11165)

Multi-Objective Counterfactual Explanations (MOC): Instead of collapsing \bullet objectives into a single objective, we could optimize all four objectives simultaneously

$$
\argmin_{\mathbf{x}'}\left(o_{\rho}(\hat{f}(\mathbf{x}'), y'), o_{f}(\mathbf{x}', \mathbf{x}), o_{s}(\mathbf{x}', \mathbf{x}), o_{4}(\mathbf{x}', \mathbf{X})\right).
$$

- Note that weighting parameters like λ are not necessary anymore
- Uses an adjusted multi-objective genetic algorithm (NSGA-II) to produce a set of diverse counterfactuals for mixed discrete and continuous feature spaces
- Instead of one, MOC returns multiple counterfactuals that represents different trade-offs between the objectives and are constructed to be diverse in feature space

EXAMPLE: CREDIT DATA

- Model: SVM with RBF kernel
- **• x**: First data point of credit data with $P(y = good) = 0.34$ of being a "good" customer
- \bullet Goal: Increase the probability to $[0.5, 1]$
- MOC (with default parameters) found 69 CEs after 200 iterations that met the target
- All counterfactuals proposed changes to credit duration and many of them to credit amount

EXAMPLE: CREDIT DATA \bullet [Dandl et al. \(2020\)](https://arxiv.org/abs/2004.11165)

- We can visualize feature changes with a parallel plot and 2-dim surface plot
- Parallel plot reveals that all counterfactuals had values equal to or smaller than the values of **x**

Parallel plot: Grey lines show feature values of CEs **x** ′ , blue line are values of **x**. Features without proposed changes are omitted. Bold numbers refer to range of numeric features.

EXAMPLE: CREDIT DATA \rightarrow [Dandl et al. \(2020\)](https://arxiv.org/abs/2004.11165)

- We can visualize feature changes with a parallel plot and 2-dim surface plot
- Parallel plot reveals that all counterfactuals had values equal to or smaller than the values of **x**
- Surface plot illustrates why these feature changes are recommended
- Counterfactuals in the lower left corner seem to be in a less favorable region far from **x**, but they are in high density areas close to training samples (indicated by histograms)

Parallel plot: Grey lines show feature values of CEs **x** ′ , blue line are values of **x**. Features without proposed changes are omitted. Bold numbers refer to range of numeric features.

Surface plot: White dot is **x**, black dots are CEs **x** ′ . Histograms show marginal distribution of training data **X**.

Illusion of model understanding: CEs explain ML decisions by pointing to few specific alternatives which reduces complexity, but is limited in explanatory power

 \rightarrow Psychologists have shown that although perceived model understanding of end-users increases, the objective model understanding remains unchanged

Illusion of model understanding: CEs explain ML decisions by pointing to few specific alternatives which reduces complexity, but is limited in explanatory power

 \rightsquigarrow Psychologists have shown that although perceived model understanding of end-users increases, the objective model understanding remains unchanged

- **Right metric:** Similarity measures are crucial to find good CEs (depends on context/domain)
	- \rightarrow e.g., L_1 can be reasonable for tabular data but not for image data
	- \rightsquigarrow sparsity can be desirable for end-users but not for data scientists searching for model bias

Illusion of model understanding: CEs explain ML decisions by pointing to few specific alternatives which reduces complexity, but is limited in explanatory power

 \rightsquigarrow Psychologists have shown that although perceived model understanding of end-users increases, the objective model understanding remains unchanged

- **Right metric:** Similarity measures are crucial to find good CEs (depends on context/domain)
	- \rightarrow e.g., L_1 can be reasonable for tabular data but not for image data

 \rightsquigarrow sparsity can be desirable for end-users but not for data scientists searching for model bias

Confusing Model and Real-World: Model explanations are not easily transferable to reality

 \rightarrow End-users need to be aware that CE provide insights into a model not the real world

Illusion of model understanding: CEs explain ML decisions by pointing to few specific alternatives which reduces complexity, but is limited in explanatory power

 \rightsquigarrow Psychologists have shown that although perceived model understanding of end-users increases, the objective model understanding remains unchanged

Right metric: Similarity measures are crucial to find good CEs (depends on context/domain)

 \rightarrow e.g., L_1 can be reasonable for tabular data but not for image data

 \rightsquigarrow sparsity can be desirable for end-users but not for data scientists searching for model bias

Confusing Model and Real-World: Model explanations are not easily transferable to reality

 \rightarrow End-users need to be aware that CE provide insights into a model not the real world

Disclosing too much information:

CEs can reveal too much information about the model and help potential attackers

Interpretable Machine Learning – 6 / 7

Rashomon effect: One, few, all? Which CEs should be shown to the end-user? \rightsquigarrow No perfect solution, depends on end-users computational resources and knowledge

- **Rashomon effect:** One, few, all? Which CEs should be shown to the end-user? \rightarrow No perfect solution, depends on end-users computational resources and knowledge
- **Actionability vs. fairness:** Some authors suggest to focus only on the actionability of CEs

 \rightsquigarrow Counteract contestability, e.g., if ethnicity is not changed in a CE since it is not actionable, this could hide racial biases in the model

- **Rashomon effect:** One, few, all? Which CEs should be shown to the end-user? \rightarrow No perfect solution, depends on end-users computational resources and knowledge
- **Actionability vs. fairness:** Some authors suggest to focus only on the actionability of CEs

 \rightsquigarrow Counteract contestability, e.g., if ethnicity is not changed in a CE since it is not actionable, this could hide racial biases in the model

Assumption of constant model: To provide guidance for the future, CEs assume that their underlying model does not change in the future \rightarrow in reality this assumption is often violated and CEs are not reliable anymore

- **Rashomon effect:** One, few, all? Which CEs should be shown to the end-user? \rightarrow No perfect solution, depends on end-users computational resources and knowledge
- **Actionability vs. fairness:** Some authors suggest to focus only on the actionability of CEs

 \rightsquigarrow Counteract contestability, e.g., if ethnicity is not changed in a CE since it is not actionable, this could hide racial biases in the model

- **Assumption of constant model:** To provide guidance for the future, CEs assume that their underlying model does not change in the future \rightarrow in reality this assumption is often violated and CEs are not reliable anymore
- **Attacking CEs:** Researchers can create models with great performance, which generate arbitrary explanations specified by the ML developer \rightarrow how faithful are CEs to the models underlying mechanism?

