
Interpretable Machine Learning

Methods & Discussion of CEs

Learning goals

See two strategies to generate CEs

Know problems and limitations of CEs



OVERVIEW OF METHODS
Currently, multiple methods exist to calculate counterfactuals. They mainly differ in:

Targets: Most methods focus on classification models, only few cover
regression models
⇝ so far, all methods remain in the supervised learning paradigm

Data: Methods mainly focus on tabular data, few on visual/text data, none on
audio data
Feature space: Some methods can only handle numerical features, few can
process mixed (numerical and discrete) feature spaces
Objectives: Many methods focus on action guidance, plausibility and sparsity,
few on other objectives like fairness or individual preferences
Model access: Methods either require access to complete model internals,
access to gradients, or only to prediction functions ⇒ Model-agnostic and
model-specific methods exist
Optimization tool: Gradient-based algorithms (only for differentiable models),
mixed-integer programming (only linear), or gradient-free algorithms e.g.
Nelder-Mead, genetic algorithm
Rashomon Effect: Many methods return a single counterfactual per run, some
multiple counterfactuals, others prioritize CEs or let the user choose
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FIRST OPTIMIZATION METHOD Wachter et. al (2018)

Introduced counterfactual explanations in the context of ML predictions by solving

argmin
x′

max
λ

λ (̂f (x′)− y ′)2︸ ︷︷ ︸
op (̂f (x′),y′)

+
∑p

j=1
|x ′

j − xj |/MADj︸ ︷︷ ︸
of (x′,x)

(1)

MADj is the median absolute deviation of feature j . In each iteration, optimizers like
Nelder-Mead solve the equation for x′ and then λ is increased until a sufficiently
close solution is found

This optimization problem has several shortcomings:

We do not know how to choose λ a priori

Due to the maximization of λ, we focus primarily on the minimization of op

⇝ only if f̂ (x′) = y ′, we focus on minimizing of

Definition of of only covers numerical features

Other objectives such as sparsity and plausibility of counterfactuals are
neglected
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MULTI-OBJECTIVE COUNTERFACTUAL
EXPLANATIONS Dandl et al. (2020)

Multi-Objective Counterfactual Explanations (MOC): Instead of collapsing
objectives into a single objective, we could optimize all four objectives
simultaneously

argmin
x′

(
op (̂f (x′), y ′), of (x′, x), os(x′, x), o4(x′,X)

)
.

Note that weighting parameters like λ are not necessary anymore

Uses an adjusted multi-objective genetic algorithm (NSGA-II) to produce a set
of diverse counterfactuals for mixed discrete and continuous feature spaces

Instead of one, MOC returns multiple counterfactuals that represents different
trade-offs between the objectives and are constructed to be diverse in feature
space
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EXAMPLE: CREDIT DATA

Model: SVM with RBF kernel

x: First data point of credit data with P(y = good) = 0.34 of being a “good"
customer

Goal: Increase the probability to [0.5, 1]

MOC (with default parameters) found 69 CEs after 200 iterations that met the
target

All counterfactuals proposed changes to credit duration and many of them to
credit amount
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EXAMPLE: CREDIT DATA Dandl et al. (2020)

We can visualize feature changes with a parallel plot and 2-dim surface plot

Parallel plot reveals that all counterfactuals had values equal to or smaller than
the values of x

Surface plot illustrates why these feature changes are recommended

Counterfactuals in the lower left corner seem to be in a less favorable region far
from x, but they are in high density areas close to training samples (indicated by
histograms)
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Parallel plot: Grey lines show feature values of CEs
x′, blue line are values of x. Features without

proposed changes are omitted. Bold numbers refer
to range of numeric features.
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Surface plot: White dot is x, black dots are CEs x′.
Histograms show marginal distribution of training

data X.
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PROBLEMS, PITFALLS, & LIMITATIONS

Illusion of model understanding: CEs explain ML decisions by pointing to few
specific alternatives which reduces complexity, but is limited in explanatory
power
⇝ Psychologists have shown that although perceived model understanding of
end-users increases, the objective model understanding remains unchanged

Right metric: Similarity measures are crucial to find good CEs (depends on
context/domain)
⇝ e.g., L1 can be reasonable for tabular data but not for image data
⇝ sparsity can be desirable for end-users but not for data scientists searching
for model bias

Confusing Model and Real-World: Model explanations are not easily
transferable to reality
⇝ End-users need to be aware that CE provide insights into a model not the
real world

Disclosing too much information:
CEs can reveal too much information about the model and help potential
attackers
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PROBLEMS, PITFALLS, & LIMITATIONS

Rashomon effect: One, few, all? Which CEs should be shown to the end-user?
⇝ No perfect solution, depends on end-users computational resources and
knowledge

Actionability vs. fairness: Some authors suggest to focus only on the
actionability of CEs
⇝ Counteract contestability, e.g., if ethnicity is not changed in a CE since it is
not actionable, this could hide racial biases in the model

Assumption of constant model: To provide guidance for the future, CEs
assume that their underlying model does not change in the future
⇝ in reality this assumption is often violated and CEs are not reliable anymore

Attacking CEs: Researchers can create models with great performance, which
generate arbitrary explanations specified by the ML developer
⇝ how faithful are CEs to the models underlying mechanism?
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