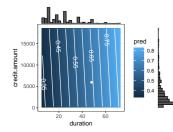
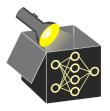
Interpretable Machine Learning

LIME Examples

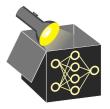


Learning goals

- See real-world data examples
- See application to image and text data



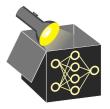
EXAMPLE ON CREDIT DATASET (TABULAR)

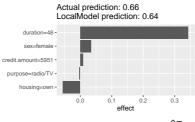


- Model: SVM with RBF kernel
- **x**: first data point of the dataset with $\hat{f}_{bad}(\mathbf{x}) = 0.658$
- z: training data ~> weighted by the Gower proximity
- Surrogate model \hat{g} : L₁-regularized linear model with 5 features

age	sex	job	housing	saving	checking	credit.amount	duration	purpose
22	female	2	own	little	moderate	5951	48	radio/TV

EXAMPLE ON CREDIT DATASET (CONT'D)



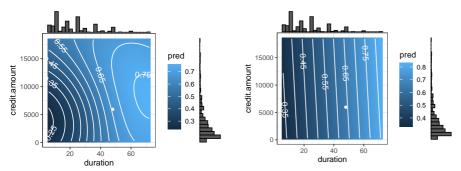


Effects of surrogate model, i.e. $\hat{\theta}^T \mathbf{x}$

- The local model prediction for **x** is $\hat{g}(\mathbf{x}) = 0.64$ vs. $\hat{f}(\mathbf{x}) = 0.658$
- \hat{g} has a local fidelity of $L(\hat{f}, \hat{g}, \phi_x) = 4.82$ with $\phi_x(z)$ as the Gower proximity and $L(\hat{f}_{bad}(z), g(z))$ as the euclidean distance

EXAMPLE ON CREDIT DATASET (CONT'D)

• 2-dim ICE plots (aka. prediction surface plot) of credit amount and duration show how the surrogate model *g* linearly approximates the previously nonlinear prediction surface of \hat{f}_{bad}



2-dim ICE plot of \hat{f}_{bad} (left) and surrogate g (right) for features duration and credit amount.

The white dot is **x**. The histograms display the marginal distribution of the training data **X**.

LIME FOR TEXT DATA Shen, lan, (2019)

LIME can also be applied to text data:

- Raw text representations:
 - Binary vector indicating the presence or absence of a word
 - A vector of word counts
- Examples for "This text is the first text." and "Finally, this is the last one.":

this	text	is	the	first	finally	last	one
1	2	1	1	1	0	0	0
1	0	1	1	0	1	1	1

- **Sampling**: Randomly set the entry of individual words to 0; equal to removing all occurrences of this word in the text.
- Proximity: Exponential kernel with cosine distance.
 - Neglects words that do not occur in both texts
 - Measures the distance irrespective of the text size

LIME FOR TEXT DATA (CONT'D) Shen, lan, (2019)

- Random forest classifier labeling movie reviews from IMDB
 - 0: negative
 - 1: positive
- Surrogate model is a sparse linear model

Words like "worst" or "waste" indicate negative review while words like "best" or "great" indicate positive review

LIME FOR IMAGE DATA

LIME also works for image data:

- Idea: Each obs. is represented by a binary vector indicating the presence or absence of superpixels
 Achanta et al. 2012
- Superpixels are interconnected pixels with similar colors (absence of a single pixel might not have a (strong) effect on the prediction)
- Warning: Size of superpixels needs to be determined before the segmentation takes place
- **Sampling**: Randomly switching some of the super pixels "off", i.e., by coloring some superpixels uniformly

Example for superpixels of different sizes

LIME FOR IMAGE DATA (CONT'D) Ribeiro. 2016

- Explaining prediction of pre-trained inception neural network classifier
- Sampling: Graving out all superpixels besides 10 superpixels
- Surrogate: Locally weighted sparse linear models
- Proximity: Exponential kernel with euclidean distance

(a) Original Image

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

(d) Explaining Labrador

Top 3 classes predicted

