Interpretable Machine Learning

Permutation Feature Importance (PFI)

Figure: Bike Sharing Dataset

Learning goals

- Understand how PFI is computed
- Understanding strengths and weaknesses
- Testing Importance

PERMUTATION FEATURE IMPORTANCE (PFI) Breiman (2001)

Idea: "Destroy" feat. of interest x_j by perturbing it s.t. it becomes uninformative, e.g., randomly permute obs. in x_j (marginal distribution $\mathbb{P}(x_j)$ stays the same). PFI for features x_s using test data \mathcal{D} :

- Measure the error without permuting feat. and with permuted feat. values \tilde{x}_S
- Repeat permuting the feat. (e.g., *m* times) and avg. the difference of both errors:

$$\widehat{PFI}_{S} = \frac{1}{m} \sum_{k=1}^{m} \mathcal{R}_{emp}(\hat{f}, \widetilde{\mathcal{D}}_{(k)}^{S}) - \mathcal{R}_{emp}(\hat{f}, \mathcal{D}),$$

where $\mathcal{R}_{emp}(\hat{f}, \mathcal{D}) = \frac{1}{n} \sum_{(x,y) \in \mathcal{D}} L(\hat{f}(x), y)$

PERMUTATION FEATURE IMPORTANCE (PFI) Breiman (2001)

Idea: "Destroy" feat. of interest x_j by perturbing it s.t. it becomes uninformative, e.g., randomly permute obs. in x_j (marginal distribution $\mathbb{P}(x_j)$ stays the same). PFI for features x_s using test data \mathcal{D} :

- Measure the error without permuting feat. and with permuted feat. values \tilde{x}_S
- Repeat permuting the feat. (e.g., *m* times) and avg. the difference of both errors:

$$\begin{split} \widehat{\textit{PFI}}_{\mathcal{S}} &= \frac{1}{m} \sum_{k=1}^{m} \mathcal{R}_{\text{emp}}(\hat{f}, \tilde{\mathcal{D}}_{(k)}^{\mathcal{S}}) - \mathcal{R}_{\text{emp}}(\hat{f}, \mathcal{D}), \\ \text{where } \mathcal{R}_{\text{emp}}(\hat{f}, \mathcal{D}) &= \frac{1}{n} \sum_{(x,y) \in \mathcal{D}} L(\hat{f}(x), y) \end{split}$$

The data \mathcal{D} where x_S is replaced with \tilde{x}^S is denoted as $\tilde{\mathcal{D}}^S$. Example of permuting feature x_S with $S = \{1\}$ and m = 6:

${\cal D}$				$ ilde{\mathcal{D}}^{\mathcal{S}}_{(1)}$			$ ilde{\mathcal{D}}^{\mathcal{S}}_{(2)}$			$ ilde{\mathcal{D}}^{\mathcal{S}}_{(3)}$			$ ilde{\mathcal{D}}^{m{S}}_{(4)}$			$ ilde{\mathcal{D}}^{\mathcal{S}}_{(5)}$			$ ilde{\mathcal{D}}^{S}_{(6)}$		
\mathbf{x}_1	x ₂	X 3	<u>→</u>	\mathbf{x}_{S}	X ₂	X 3	\mathbf{x}_{S}	X 2	X 3	\mathbf{x}_{S}	X ₂	X 3	\mathbf{X}_S	X ₂	X 3	\mathbf{X}_S	X 2	X 3	\mathbf{x}_{S}	X 2	\mathbf{X}_3
1	4	7		1	4	7	2	4	7	2	4	7	1	4	7	3	4	7	3	4	7
2	5	8		2	5	8	1	5	8	3	5	8	3	5	8	1	5	8	2	5	8
3	6	9		3	6	9	3	6	9	1	6	9	2	6	9	2	6	9	1	6	9

Note: The *S* in x_S refers to a **S**ubset of features for which we are interested in their effect on the prediction. Here: We calculate the feature importance for one feature at a time |S| = 1.

- **1. Perturbation:** Sample feature values from the distribution of x_S ($P(X_S)$).
 - \Rightarrow Randomly permute feature x_S

 \Rightarrow Replace original feature with permuted feature \tilde{x}_S and create data $\tilde{\mathcal{D}}^S$ containing \tilde{x}_S

 \mathcal{D}

- **1.** Perturbation: Sample feature values from the distribution of x_S ($P(X_S)$).
 - \Rightarrow Randomly permute feature x_S

 \Rightarrow Replace original feature with permuted feature \tilde{x}_S and create data $\tilde{\mathcal{D}}^S$ containing \tilde{x}_S

2. Prediction: Make predictions for both data, i.e., ${\cal D}$ and $\tilde{{\cal D}}^{{\cal S}}$

 \mathcal{D}

3. Aggregation:

• Compute the loss for each observation in both data sets

3. Aggregation:

- Compute the loss for each observation in both data sets
- Take the difference of both losses ΔL for each observation

$$\mathcal{R}_{emp}(\hat{f}, \tilde{\mathcal{D}}^{\mathcal{S}}_{(k)}) - \mathcal{R}_{emp}(\hat{f}, \mathcal{D})$$

3. Aggregation:

- Compute the loss for each observation in both data sets
- Take the difference of both losses ΔL for each observation
- Average this change in loss across all observations Note: This is equivalent to computing \mathcal{R}_{emp} on both data sets and taking the difference

3. Aggregation:

- Compute the loss for each observation in both data sets
- Take the difference of both losses ΔL for each observation
- Average this change in loss across all observations
- Repeat perturbation and average over multiple repetitions

EXAMPLE: BIKE SHARING DATASET

Interpretation:

- Year (yr) and Temperature (temp) are most important features
- Destroying information about yr by permuting it increases mean absolute error of model by 816
- 5% and 95% quantile of repetitions due multiple permutations are shown as error bars

• Interpretation: PFI is the increase of model error when feature's information is destroyed

- Interpretation: PFI is the increase of model error when feature's information is destroyed
- Results can be unreliable due to random permutations
 ⇒ Solution: Average results over multiple repetitions

- Interpretation: PFI is the increase of model error when feature's information is destroyed
- Results can be unreliable due to random permutations
 ⇒ Solution: Average results over multiple repetitions
- Permuting features despite correlation with other features can lead to unrealistic combinations of feature values (since under dependence P(x_j, x_{-j}) ≠ P(x_j)P(x_{-j})) → Extrapolation issue

- Interpretation: PFI is the increase of model error when feature's information is destroyed
- Results can be unreliable due to random permutations
 ⇒ Solution: Average results over multiple repetitions
- Permuting features despite correlation with other features can lead to unrealistic combinations of feature values (since under dependence P(x_j, x_{-j}) ≠ ℙ(x_j)ℙ(x_{-j})) → Extrapolation issue
- PFI automatically includes importance of interaction effects with other features
 ⇒ Permutation also destroys information of interactions where permuted feature is involved
 - \Rightarrow Importance of all interactions with the permuted feature are contained in PFI score

- Interpretation: PFI is the increase of model error when feature's information is destroyed
- Results can be unreliable due to random permutations
 ⇒ Solution: Average results over multiple repetitions
- Permuting features despite correlation with other features can lead to unrealistic combinations of feature values (since under dependence P(x_j, x_{-j}) ≠ P(x_j)P(x_{-j})) → Extrapolation issue
- PFI automatically includes importance of interaction effects with other features
 ⇒ Permutation also destroys information of interactions where permuted feature is involved
 - \Rightarrow Importance of all interactions with the permuted feature are contained in PFI score
- Interpretation of PFI depends on whether training or test data is used

COMMENTS ON PFI - EXTRAPOLATION

Example: Let $y = x_3 + \epsilon_y$ with $\epsilon_y \sim N(0, 0.1)$ where $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$ are highly correlated ($\epsilon_1 \sim N(0, 1), \epsilon_2 \sim N(0, 0.01)$) and $x_3 := \epsilon_3, x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim N(0, 1)$. All noise terms are independent. Fitting a LM yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 - 0.3x_2 + x_3$.

COMMENTS ON PFI - EXTRAPOLATION

Example: Let $y = x_3 + \epsilon_y$ with $\epsilon_y \sim N(0, 0.1)$ where $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$ are highly correlated ($\epsilon_1 \sim N(0, 1), \epsilon_2 \sim N(0, 0.01)$) and $x_3 := \epsilon_3, x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim N(0, 1)$. All noise terms are independent. Fitting a LM yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 - 0.3x_2 + x_3$.

Hexbin plot of x_1 , x_2 before permuting x_1 (left), after permuting x_1 (center), and PFI scores (right)

COMMENTS ON PFI - EXTRAPOLATION

Example: Let $y = x_3 + \epsilon_y$ with $\epsilon_y \sim N(0, 0.1)$ where $x_1 := \epsilon_1, x_2 := x_1 + \epsilon_2$ are highly correlated ($\epsilon_1 \sim N(0, 1), \epsilon_2 \sim N(0, 0.01)$) and $x_3 := \epsilon_3, x_4 := \epsilon_4$, with $\epsilon_3, \epsilon_4 \sim N(0, 1)$. All noise terms are independent. Fitting a LM yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 - 0.3x_2 + x_3$.

Hexbin plot of x_1, x_2 before permuting x_1 (left), after permuting x_1 (center), and PFI scores (right) $\Rightarrow x_1$ and x_2 should be irrelevant for the prediction $\hat{f}(\mathbf{x})$ for

 $\{\mathbf{x} : \mathbb{P}(\mathbf{x}) > 0\}$ as $0.3x_1 - 0.3x_2 \approx 0$ \Rightarrow PFI evaluates model on unrealistic obs. outside $\mathbb{P}(\mathbf{x}) \rightsquigarrow x_1, x_2$ are considered relevant (PFI > 0)

COMMENTS ON PFI - INTERACTIONS

Example: Let x_1, \ldots, x_4 be independently and uniformly sampled from $\{-1, 1\}$ and

 $y := x_1 x_2 + x_3 + \epsilon_Y$ with $\epsilon_Y \sim N(0, 1)$

Fitting a LM yields $\hat{f}(x) \approx x_1 x_2 + x_3$.

COMMENTS ON PFI - INTERACTIONS

Example: Let x_1, \ldots, x_4 be independently and uniformly sampled from $\{-1, 1\}$ and

$$y := x_1 x_2 + x_3 + \epsilon_Y$$
 with $\epsilon_Y \sim N(0, 1)$

Fitting a LM yields $\hat{f}(x) \approx x_1 x_2 + x_3$.

Although x_3 alone contributes as much to the prediction as x_1 and x_2 jointly, all three are considered equally relevant.

 \Rightarrow PFI does not fairly attribute the performance to the individual features.

COMMENTS ON PFI - TEST VS. TRAINING DATA

Example: x_1, \ldots, x_{20}, y are independently sampled from $\mathcal{U}(-10, 10)$. An xgboost model with default hyperparameters is fit on a small training set of 50 observations. The model overfits heavily.

Figure: While PFI on test data considers all features to be irrelevant, PFI on train data exposes the features on which the model overfitted.

COMMENTS ON PFI - TEST VS. TRAINING DATA

Example: x_1, \ldots, x_{20}, y are independently sampled from $\mathcal{U}(-10, 10)$. An xgboost model with default hyperparameters is fit on a small training set of 50 observations. The model overfits heavily.

Figure: While PFI on test data considers all features to be irrelevant, PFI on train data exposes the features on which the model overfitted.

Why? PFI can only be nonzero if the permutation breaks a dependence in the data. Spurious correlations help the model perform well on train data but are not present in the test data.

 \Rightarrow If you are interested in which features help the model to generalize, apply PFI on test data.

IMPLICATIONS OF PFI

Can we get insight into whether the ...

- feature x_j is causal for the prediction?
 - $PFI_j \neq 0 \Rightarrow$ model relies on x_j
 - As the training vs. test data example demonstrates, the converse does not hold

IMPLICATIONS OF PFI

Can we get insight into whether the ...

- feature x_j is causal for the prediction?
 - $PFI_j \neq 0 \Rightarrow$ model relies on x_j
 - As the training vs. test data example demonstrates, the converse does not hold
- 2 feature x_j contains prediction-relevant information?
 - *PFI_j* ≠ 0 ⇒ x_j is dependent of y or it's covariates x_{-j} or both (due to extrapolation)
 - *x_j* is not exploited by model (regardless of whether it is useful for *y* or not)
 ⇒ *PFI_j* = 0

IMPLICATIONS OF PFI

Can we get insight into whether the ...

- feature x_i is causal for the prediction?
 - $PFI_j \neq 0 \Rightarrow$ model relies on x_j
 - As the training vs. test data example demonstrates, the converse does not hold
- Ifeature x_j contains prediction-relevant information?
 - *PFI_j* ≠ 0 ⇒ x_j is dependent of y or it's covariates x_{-j} or both (due to extrapolation)
 - *x_j* is not exploited by model (regardless of whether it is useful for *y* or not)
 ⇒ *PFI_j* = 0
- model requires access to x_j to achieve it's prediction performance?
 - As the extrapolation example demonstrates, such insight is not possible

• PIMP was originally introduced for random forest's built-in permutation feature importance

- PIMP was originally introduced for random forest's built-in permutation feature importance
- PIMP investigates whether the PFI score significantly differs from 0
 ⇒ Useful because PFI can be non-zero due to stochasticity

- PIMP was originally introduced for random forest's built-in permutation feature importance
- PIMP investigates whether the PFI score **significantly** differs from 0 ⇒ Useful because PFI can be non-zero due to stochasticity
- PIMP tests the *H*₀-hypothesis: Feature is independent of the target *y* (unimportant)

- PIMP was originally introduced for random forest's built-in permutation feature importance
- PIMP investigates whether the PFI score **significantly** differs from 0 ⇒ Useful because PFI can be non-zero due to stochasticity
- PIMP tests the *H*₀-hypothesis: Feature is independent of the target *y* (unimportant)
- Sampling under *H*₀: Permute target *y*, retrain model, compute PFI scores (repeat)
 - \Rightarrow Permuting *y* breaks relationship to all features
 - \Rightarrow By computing PFI scores again, we obtain distribution of PFI scores under H_0

- PIMP was originally introduced for random forest's built-in permutation feature importance
- PIMP investigates whether the PFI score **significantly** differs from 0 ⇒ Useful because PFI can be non-zero due to stochasticity
- PIMP tests the *H*₀-hypothesis: Feature is independent of the target *y* (unimportant)
- Sampling under *H*₀: Permute target *y*, retrain model, compute PFI scores (repeat)
 - \Rightarrow Permuting *y* breaks relationship to all features
 - \Rightarrow By computing PFI scores again, we obtain distribution of PFI scores under H_0
- Compute p-value the tail probability under *H*₀ and use it as a new importance measure

TESTING IMPORTANCE (PIMP)

PIMP algorithm:

- For $m \in \{1, \ldots, n_{repetitions}\}$:
 - Permute response vector y
 - Retrain model with data **X** and permuted y
 - Compute feature importance PFI_i^m for each feature *j* (under H_0)

TESTING IMPORTANCE (PIMP)

PIMP algorithm:

- For $m \in \{1, \ldots, n_{repetitions}\}$:
 - Permute response vector y
 - Retrain model with data **X** and permuted y
 - Compute feature importance PFI_i^m for each feature j (under H_0)
- 2 Train model with \mathbf{X} and unpermuted y

TESTING IMPORTANCE (PIMP)

PIMP algorithm:

- For $m \in \{1, \ldots, n_{repetitions}\}$:
 - Permute response vector y
 - Retrain model with data X and permuted y
 - Compute feature importance PFI_i^m for each feature *j* (under H_0)
- 2 Train model with X and unpermuted y
- For each feature $j \in \{1, \ldots, p\}$:
 - Fit probability distribution of the feature importance values *PFI_j^m*, *m* ∈ {1,..., *n_{repetitions}*} (choice between Gaussian, lognormal, gamma or non-parametric)
 - Compute feature importance *PFI_j* for the model without permutation of *y* (under *H*₁)
 - Retrieve the p-value of PFI_j based on the fitted distribution

PIMP FOR EXTRAPOLATION EXAMPLE

Recall: $y = x_3 + \epsilon_y$ with $\epsilon_y \sim N(0, 0.1)$, x_1 , x_2 highly correlated but independent of y, x_4 is independent of y and all other variables. Fitting a LM yields $\hat{f}(\mathbf{x}) \approx 0.3x_1 - 0.3x_2 + x_3$.

- Histograms: H_0 distribution of PFI scores after permuting y (1000 repetitions)
- Red: PFI score estimated on unpermuted *y* (under *H*₁) → compare against *H*₀ distribution
- Results: Although PFI for x₁ and x₂ is nonzero (red), PIMP considers them not significantly relevant (p-value > 0.05)

▶ Romano et al. (2010)

• When should we reject the *H*₀-hypothesis for a feature?

▶ Romano et al. (2010)

- When should we reject the *H*₀-hypothesis for a feature?
- The larger the number of features, the more tests need to be performed by PIMP \rightsquigarrow **Multiple testing problem**: If multiplicity of tests is not taken into account, the probability that some of the true H_0 -hypothesis is rejected (type-I error) by chance may be large

▶ Romano et al. (2010)

- When should we reject the *H*₀-hypothesis for a feature?
- The larger the number of features, the more tests need to be performed by PIMP \rightsquigarrow **Multiple testing problem**: If multiplicity of tests is not taken into account, the probability that some of the true H_0 -hypothesis is rejected (type-I error) by chance may be large
- Accounting for multiplicity of individual tests can be achieved by controlling an appropriate error rate, e.g., the **family-wise error rate** (FWE: probability of at least one type-I error)

▶ Romano et al. (2010)

- When should we reject the *H*₀-hypothesis for a feature?
- The larger the number of features, the more tests need to be performed by PIMP \rightsquigarrow **Multiple testing problem**: If multiplicity of tests is not taken into account, the probability that some of the true H_0 -hypothesis is rejected (type-I error) by chance may be large
- Accounting for multiplicity of individual tests can be achieved by controlling an appropriate error rate, e.g., the **family-wise error rate** (FWE: probability of at least one type-I error)
- One classical method to control the FWE is the **Bonferroni correction** which rejects a null hypothesis if its p-value is smaller than α/m with *m* as the number of performed parallel tests

