
Interpretable Machine Learning

Permutation Feature Importance (PFI)

Learning goals

Understand how PFI is computed

Understanding strengths and weaknesses

Testing Importance



PERMUTATION FEATURE IMPORTANCE (PFI) Breiman (2001)

Idea: "Destroy" feat. of interest xj by perturbing it s.t. it becomes uninformative, e.g.,
randomly permute obs. in xj (marginal distribution P(xj) stays the same).
PFI for features xS using test data D:

Measure the error without permuting feat. and with permuted feat. values x̃S

Repeat permuting the feat. (e.g., m times) and avg. the difference of both errors:

P̂FIS = 1
m

∑m
k=1 Remp(̂f , D̃S

(k))−Remp(̂f ,D),

where Remp(̂f ,D) =
1
n

∑
(x,y)∈D

L(̂f (x), y)

The data D where xS is replaced with x̃S is denoted as D̃S .
Example of permuting feature xS with S = {1} and m = 6:

Note: The S in xS refers to a Subset of features for which we are interested in their effect on the prediction.
Here: We calculate the feature importance for one feature at a time |S| = 1.
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PERMUTATION FEATURE IMPORTANCE
Remp(̂f , D̃S

(k))−Remp(̂f ,D)

x1 x2 x3
1 4 7
2 5 8
3 6 9

xS x2 x3
1 2 4 7
⋮ 1 5 8
n 3 6 9

1. Perturbation: Sample feature values from the distribution of xS (P(XS)).
⇒ Randomly permute feature xS

⇒ Replace original feature with permuted feature x̃S and create data D̃S

containing x̃S

Compute the loss for each observation in both data sets
Take the difference of both losses ∆L for each observation
Average this change in loss across all observations
Repeat perturbation and average over multiple repetitions
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1. Perturbation: Sample feature values from the distribution of xS (P(XS)).
⇒ Randomly permute feature xS

⇒ Replace original feature with permuted feature x̃S and create data D̃S

containing x̃S

2. Prediction: Make predictions for both data, i.e., D and D̃S

Compute the loss for each observation in both data sets
Take the difference of both losses ∆L for each observation
Average this change in loss across all observations
Repeat perturbation and average over multiple repetitions
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3. Aggregation:

Compute the loss for each observation in both data sets

Take the difference of both losses ∆L for each observation
Average this change in loss across all observations
Repeat perturbation and average over multiple repetitions
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PERMUTATION FEATURE IMPORTANCE
Remp(̂f , D̃S

(k))−Remp(̂f ,D)

x1 x2 x3
1 4 7
2 5 8
3 6 9

xS x2 x3
1 2 4 7
⋮ 1 5 8
n 3 6 9

∆L
0.65
0.15

0
= 0.267

3. Aggregation:

Compute the loss for each observation in both data sets
Take the difference of both losses ∆L for each observation
Average this change in loss across all observations
Note: This is equivalent to computing Remp on both data sets and taking
the difference

Repeat perturbation and average over multiple repetitions
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PERMUTATION FEATURE IMPORTANCE
Remp(̂f , D̃S

(k))−Remp(̂f ,D)

x1 x2 x3
1 4 7
2 5 8
3 6 9

x1 x2 x3
1 4 7
2 5 8
3 6 9

xS x2 x3

     1 1 2 4 7
⋮ 1 5 8
n 3 6 9

xS x2 x3

m 1 3 4 7
⋮ 2 5 8
n 1 6 9

∆L
0.65
0.15

0

∆L
0.85

0
0.35

= 0.267

= 0.4

= ½ (0.267 + 0.4)⋮

3. Aggregation:

Compute the loss for each observation in both data sets
Take the difference of both losses ∆L for each observation
Average this change in loss across all observations
Repeat perturbation and average over multiple repetitions

Interpretable Machine Learning – 2 / 12



EXAMPLE: BIKE SHARING DATASET

Interpretation:

Year (yr) and Temperature (temp) are most important features

Destroying information about yr by permuting it increases mean absolute error
of model by 816

5% and 95% quantile of repetitions due multiple permutations are shown as
error bars
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COMMENTS ON PFI

Interpretation: PFI is the increase of model error when feature’s information is
destroyed

Results can be unreliable due to random permutations
⇒ Solution: Average results over multiple repetitions

Permuting features despite correlation with other features can lead to unrealistic
combinations of feature values (since under dependence
P(xj , x−j) ̸= P(xj)P(x−j))⇝ Extrapolation issue

PFI automatically includes importance of interaction effects with other features
⇒ Permutation also destroys information of interactions where permuted feature
is involved
⇒ Importance of all interactions with the permuted feature are contained in PFI
score

Interpretation of PFI depends on whether training or test data is used
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COMMENTS ON PFI - EXTRAPOLATION
Example: Let y = x3 + ϵy with ϵy ∼ N(0, 0.1) where x1 := ϵ1, x2 := x1 + ϵ2 are
highly correlated (ϵ1 ∼ N(0, 1), ϵ2 ∼ N(0, 0.01)) and x3 := ϵ3, x4 := ϵ4, with
ϵ3, ϵ4 ∼ N(0, 1). All noise terms are independent. Fitting a LM yields
f̂ (x) ≈ 0.3x1 − 0.3x2 + x3.
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Hexbin plot of x1, x2 before permuting x1 (left), after permuting x1 (center), and PFI
scores (right) ⇒ x1 and x2 should be irrelevant for the prediction f̂ (x) for

{x : P(x) > 0} as 0.3x1 − 0.3x2 ≈ 0
⇒ PFI evaluates model on unrealistic obs. outside P(x)⇝ x1, x2 are considered
relevant (PFI > 0)
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COMMENTS ON PFI - INTERACTIONS
Example: Let x1, . . . , x4 be independently and uniformly sampled from {−1, 1} and

y := x1x2 + x3 + ϵY with ϵY ∼ N(0, 1)

Fitting a LM yields f̂ (x) ≈ x1x2 + x3.

Although x3 alone contributes as much to
the prediction as x1 and x2 jointly, all three
are considered equally relevant.

⇒ PFI does not fairly attribute the
performance to the individual features.
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COMMENTS ON PFI - TEST VS. TRAINING DATA
Example: x1, . . . , x20, y are independently sampled from U(−10, 10). An xgboost

model with default hyperparameters is fit on a small training set of 50 observations.
The model overfits heavily.
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Figure: While PFI on test data considers all features to be irrelevant, PFI on train
data exposes the features on which the model overfitted.

Why? PFI can only be nonzero if the permutation breaks a dependence in the data.
Spurious correlations help the model perform well on train data but are not present in
the test data.
⇒ If you are interested in which features help the model to generalize, apply PFI on
test data.

Interpretable Machine Learning – 7 / 12



COMMENTS ON PFI - TEST VS. TRAINING DATA
Example: x1, . . . , x20, y are independently sampled from U(−10, 10). An xgboost

model with default hyperparameters is fit on a small training set of 50 observations.
The model overfits heavily.

0.00

0.25

0.50

0.75

X4 X6 X14 X3 X10 X11 X20 X1 X12 X13 X15 X16 X17 X18 X19 X2 X5 X7 X8 X9
Feature

S
co

re

IML method

PFI on train data

PFI on test data

Figure: While PFI on test data considers all features to be irrelevant, PFI on train
data exposes the features on which the model overfitted.

Why? PFI can only be nonzero if the permutation breaks a dependence in the data.
Spurious correlations help the model perform well on train data but are not present in
the test data.
⇒ If you are interested in which features help the model to generalize, apply PFI on
test data.

Interpretable Machine Learning – 7 / 12



IMPLICATIONS OF PFI
Can we get insight into whether the ...

1 feature xj is causal for the prediction?

PFIj ̸= 0 ⇒ model relies on xj

As the training vs. test data example demonstrates, the converse does not
hold

2 feature xj contains prediction-relevant information?

PFIj ̸= 0 ⇒ xj is dependent of y or it’s covariates x−j or both (due to
extrapolation)
xj is not exploited by model (regardless of whether it is useful for y or not)
⇒ PFIj = 0

3 model requires access to xj to achieve it’s prediction performance?

As the extrapolation example demonstrates, such insight is not possible
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TESTING IMPORTANCE (PIMP) Altmann et al. (2010)

PIMP was originally introduced for random forest’s built-in permutation feature
importance

PIMP investigates whether the PFI score significantly differs from 0
⇒ Useful because PFI can be non-zero due to stochasticity

PIMP tests the H0-hypothesis: Feature is independent of the target y
(unimportant)

Sampling under H0: Permute target y , retrain model, compute PFI scores
(repeat)
⇒ Permuting y breaks relationship to all features
⇒ By computing PFI scores again, we obtain distribution of PFI scores under H0

Compute p-value - the tail probability under H0 - and use it as a new importance
measure
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TESTING IMPORTANCE (PIMP)

PIMP algorithm:
1 For m ∈ {1, . . . , nrepetitions}:

Permute response vector y
Retrain model with data X and permuted y
Compute feature importance PFIm

j for each feature j (under H0)

2 Train model with X and unpermuted y
3 For each feature j ∈ {1, . . . , p}:

Fit probability distribution of the feature importance values PFIm
j ,

m ∈ {1, . . . , nrepetitions} (choice between Gaussian, lognormal, gamma or
non-parametric)
Compute feature importance PFIj for the model without permutation of y
(under H1)
Retrieve the p-value of PFIj based on the fitted distribution
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PIMP FOR EXTRAPOLATION EXAMPLE
Recall: y = x3 + ϵy with ϵy ∼ N(0, 0.1), x1, x2 highly correlated but independent of
y , x4 is independent of y and all other variables. Fitting a LM yields
f̂ (x) ≈ 0.3x1 − 0.3x2 + x3.

x1, p−val: 0.827 x2, p−val: 0.823 x3, p−val: 0 x4, p−val: 0.464
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Histograms: H0 distribution of PFI scores after permuting y (1000 repetitions)

Red: PFI score estimated on unpermuted y (under H1)⇝ compare against H0

distribution

Results: Although PFI for x1 and x2 is nonzero (red), PIMP considers them not
significantly relevant (p-value > 0.05)
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DIGRESSION: MULTIPLE TESTING PROBLEM
Romano et al. (2010)

When should we reject the H0-hypothesis for a feature?

The larger the number of features, the more tests need to be performed by PIMP
⇝ Multiple testing problem: If multiplicity of tests is not taken into account, the
probability that some of the true H0-hypothesis is rejected (type-I error) by
chance may be large

Accounting for multiplicity of individual tests can be achieved by controlling an
appropriate error rate, e.g., the family-wise error rate (FWE: probability of at
least one type-I error)

One classical method to control the FWE is the Bonferroni correction which
rejects a null hypothesis if its p-value is smaller than α/m with m as the number
of performed parallel tests
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probability that some of the true H0-hypothesis is rejected (type-I error) by
chance may be large

Accounting for multiplicity of individual tests can be achieved by controlling an
appropriate error rate, e.g., the family-wise error rate (FWE: probability of at
least one type-I error)

One classical method to control the FWE is the Bonferroni correction which
rejects a null hypothesis if its p-value is smaller than α/m with m as the number
of performed parallel tests
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