
Interpretable Machine Learning

SHAP (SHapley Additive exPlanation) Values

Learning goals

Get an intuition of additive feature attributions

Understand the concept of Kernel SHAP

Ability to interpret SHAP plots

Global SHAP methods



KERNEL SHAP - IN 5 STEPS
Definition: A kernel-based, model-agnostic method to compute Shapley values via
local surrogate models (e.g. linear model)

1 Sample coalitions
2 Transfer coalitions into feature space & get predictions by applying ML model
3 Compute weights through kernel
4 Fit a weighted linear model
5 Return Shapley values
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KERNEL SHAP - IN 5 STEPS
Step 1: Sample coalitions

Sample K coalitions from the simplified feature space

z′(k) ∈ {0, 1}p, k ∈ {1, . . . ,K}

For our simple example, we have in total 2p = 23 = 8 coalitions (without
sampling)

Coalition z′(k) hum temp ws
∅ z′(1) 0 0 0
hum z′(2) 1 0 0
temp z′(3) 0 1 0
ws z′(4) 0 0 1
hum, temp z′(5) 1 1 0
temp, ws z′(6) 0 1 1
hum, ws z′(7) 1 0 1
hum, temp, ws z′(8) 1 1 1
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KERNEL SHAP - IN 5 STEPS
Step 2: Transfer Coalitions into feature space & get predictions by applying ML
model

z′(k) is 1 if features are are part of the k -th coalition, 0 if they are absent

To calculate predictions for these coalitions, we need to define a function which
maps the binary feature space back to the original feature space

xcoalition hum temp ws

x{∅} ∅ ∅ ∅
x{hum} 51.6 ∅ ∅
x{temp} ∅ 5.1 ∅
x{ws} ∅ ∅ 17.0

x{hum,temp} 51.6 5.1 ∅
x{temp,ws} ∅ 5.1 17.0

x{hum,ws} 51.6 ∅ 17.0

x{hum,temp,ws} 51.6 5.1 17.0

Coalition z′(k) hum temp ws

∅ z′(1) 0 0 0

hum z′(2) 1 0 0

temp z′(3) 0 1 0

ws z′(4) 0 0 1

hum, temp z′(5) 1 1 0

temp, ws z′(6) 0 1 1

hum, ws z′(7) 1 0 1

hum, temp, ws z′(8) 1 1 1
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KERNEL SHAP - IN 5 STEPS
Step 2: Transfer Coalitions into feature space & get predictions by applying ML
model

Define hx
(
z′(k)

)
= z(k) where hx : {0, 1}p → Rp maps 1’s to feature values of

observation x for features part of the k -th coalition and 0’s to feature values of a
randomly sampled observation for features absent in the k -th coalition (feature
values are permuted multiple times)

Predict with ML model on this dataset f̂ : f̂
(
hx

(
z′(k)

))
z(k) hum temp ws f̂

(
hx

(
z′(k)

))
z(1) 64.3 28.0 14.5 6211

z(2) 51.6 28.0 14.5 5586

z(3) 64.3 5.1 14.5 3295

z(4) 64.3 28.0 17.0 5762

z(5) 51.6 5.1 14.5 2616

z(6) 64.3 5.1 17.0 2900

z(7) 51.6 28.0 17.0 5411

z(8) 51.6 5.1 17.0 2573

Coalition z′(k) hum temp ws

∅ z′(1) 0 0 0

hum z′(2) 1 0 0

temp z′(3) 0 1 0

ws z′(4) 0 0 1

hum, temp z′(5) 1 1 0

temp, ws z′(6) 0 1 1

hum, ws z′(7) 1 0 1

hum, temp, ws z′(8) 1 1 1

hx (z′(k))
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KERNEL SHAP - IN 5 STEPS
Step 3: Compute weights through Kernel

Intuition: We learn most about individual features if we can study their effects in
isolation or at maximal interaction: Small coalitions (few 1’s) and large coalitions (i.e.
many 1’s) get the largest weights
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KERNEL SHAP - IN 5 STEPS
Step 3: Compute weights through Kernel see shapley_kernel_proof.pdf

Intuition: We learn most about individual features if we can study their effects in
isolation or at maximal interaction: Small coalitions (few 1’s) and large coalitions (i.e.
many 1’s) get the largest weights

πx

(
z′(k)

)
=

(p − 1)(
p∣∣z′(k)∣∣

) ∣∣z′(k)∣∣ (p −
∣∣z′(k)∣∣)

πx(z′(k)): kernel
weight for coalition
z′(k)

p: Number of fea-
tures in x

| z′(k) |: coalition
size / sum of 1s in
z′(k)
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https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Supplemental.zip


KERNEL SHAP - IN 5 STEPS
Step 3: Compute weights through Kernel

Purpose: to include this knowledge in the local surrogate model (linear regression),
we calculate weights for each coalition which are the observations of the linear
regression

πx (z′) =
(p − 1)(

p
|z′|

)
|z′|(p − |z′|)

⇝ πx (z′ = (1, 0, 0)) =
(3 − 1)(

3
1

)
1 (3 − 1)

=
1
3

Coalition z′(k) hum temp ws weight
∅ z′(1) 0 0 0 ∞
hum z′(2) 1 0 0 0.33
temp z′(3) 0 1 0 0.33
ws z′(4) 0 0 1 0.33
hum, temp z′(5) 1 1 0 0.33
temp, ws z′(6) 0 1 1 0.33
hum, ws z′(7) 1 0 1 0.33
hum, temp, ws z′(8) 1 1 1 ∞

Interpretable Machine Learning – 6 / 8



KERNEL SHAP - IN 5 STEPS
Step 3: Compute weights through Kernel

Purpose: to include this knowledge in the local surrogate model (linear regression),
we calculate weights for each coalition which are the observations of the linear
regression

Coalition z′(k) hum temp ws weight
∅ z′(1) 0 0 0 ∞
hum z′(2) 1 0 0 0.33
temp z′(3) 0 1 0 0.33
ws z′(4) 0 0 1 0.33
hum, temp z′(5) 1 1 0 0.33
temp, ws z′(6) 0 1 1 0.33
hum, ws z′(7) 1 0 1 0.33
hum, temp, ws z′(8) 1 1 1 ∞

⇝ weights for empty and full set are infinity and not used as observations for the
linear regression
⇝ instead constraints are used such that properties (local accuracy and
missingness) are satisfied
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KERNEL SHAP - IN 5 STEPS
Step 4: Fit a weighted linear model

Aim: Estimate a weighted linear model with Shapley values being the coefficients ϕj

g
(

z′(k)
)
= ϕ0 +

p∑
j=1

ϕjz
′(k)
j

and minimize by WLS using the weights πx of step 3

L
(

f̂ , g, πx

)
=

K∑
k=1

[
f̂
(

hx

(
z′(k)

))
− g

(
z′(k)

)]2
πx

(
z′(k)

)
with ϕ0 = E(̂f ) and ϕp = f̂ (x)−

∑p−1
j=0 ϕj we receive a p − 1 dimensional linear

regression problem
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KERNEL SHAP - IN 5 STEPS
Step 4: Fit a weighted linear model

Aim: Estimate a weighted linear model with Shapley values being the coefficients ϕj

g
(

z′(k)
)
= ϕ0 +

p∑
j=1

ϕjz
′(k)
j ⇝ g

(
z′(k)

)
= 4515+34 · z′(k)

1 −1654 · z′(k)
2 −323 · z′(k)

3

z′(k) hum temp ws weight f̂
z′(2) 1 0 0 0.33 4635
z′(3) 0 1 0 0.33 3087
z′(4) 0 0 1 0.33 4359
z′(5) 1 1 0 0.33 3060
z′(6) 0 1 1 0.33 2623
z′(7) 1 0 1 0.33 4450︸ ︷︷ ︸ ︸︷︷︸

input output

Interpretable Machine Learning – 7 / 8



KERNEL SHAP - IN 5 STEPS
Step 5: Return SHAP values

Intuition: Estimated Kernel SHAP values are equivalent to Shapley values

g(z′(8)) = f̂ (hx(z′(8))) = 4515 + 34 · 1 − 1654 · 1 − 323 · 1

= E(̂f )︸︷︷︸
ϕ0

+ϕhum + ϕtemp + ϕws = f̂ (x) = 2573
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